Displaying 341 – 360 of 479

Showing per page

Global solution to the Cauchy problem of nonlinear thermodiffusion in a solid body

Arkadiusz Szymaniec (2010)

Applicationes Mathematicae

We consider the initial-value problem for a nonlinear hyperbolic-parabolic system of three coupled partial differential equations of second order describing the process of thermodiffusion in a solid body (in one-dimensional space). We prove global (in time) existence and uniqueness of the solution to the initial-value problem for this nonlinear system. The global existence is proved using time decay estimates for the solution of the associated linearized problem. Next, we prove an energy estimate...

Global solutions of quasilinear systems of Klein–Gordon equations in 3D

Alexandru D. Ionescu, Benoît Pausader (2014)

Journal of the European Mathematical Society

We prove small data global existence and scattering for quasilinear systems of Klein-Gordon equations with different speeds, in dimension three. As an application, we obtain a robust global stability result for the Euler-Maxwell equations for electrons.

Global solutions, structure of initial data and the Navier-Stokes equations

Piotr Bogusław Mucha (2008)

Banach Center Publications

In this note we present a proof of existence of global in time regular (unique) solutions to the Navier-Stokes equations in an arbitrary three dimensional domain with a general boundary condition. The only restriction is that the L₂-norm of the initial datum is required to be sufficiently small. The magnitude of the rest of the norm is not restricted. Our considerations show the essential role played by the energy bound in proving global in time results for the Navier-Stokes equations.

Currently displaying 341 – 360 of 479