Global solutions to a class fo strongly coupled parabolic systems.
Global solutions of semilinear parabolic equations are studied in the case when some weak a priori estimate for solutions of the problem under consideration is already known. The focus is on the rapid growth of the nonlinear term for which existence of the semigroup and certain dynamic properties of the considered system can be justified. Examples including the famous Cahn-Hilliard equation are finally discussed.
We study the chemotaxis system with singular sensitivity and logistic-type source: , under the non-flux boundary conditions in a smooth bounded domain , , and . It is shown with that the system possesses a global generalized solution for which is bounded when is suitably small related to and the initial datum is properly small, and a global bounded classical solution for .
We consider the damped wave equation on the whole real line, where is a bistable potential. This equation has travelling front solutions of the form which describe a moving interface between two different steady states of the system, one of which being the global minimum of . We show that, if the initial data are sufficiently close to the profile of a front for large , the solution of the damped wave equation converges uniformly on to a travelling front as . The proof of this global stability...