Displaying 421 – 440 of 603

Showing per page

Note on the internal stabilization of stochastic parabolic equations with linearly multiplicative gaussian noise

Viorel Barbu (2013)

ESAIM: Control, Optimisation and Calculus of Variations

The parabolic equations driven by linearly multiplicative Gaussian noise are stabilizable in probability by linear feedback controllers with support in a suitably chosen open subset of the domain. This procedure extends to Navier − Stokes equations with multiplicative noise. The exact controllability is also discussed.

Notes on symplectic non-squeezing of the KdV flow

J. Colliander, M. Keel, G. Staffilani, H. Takaoka, T. Tao (2005)

Journées Équations aux dérivées partielles

We prove two finite dimensional approximation results and a symplectic non-squeezing property for the Korteweg-de Vries (KdV) flow on the circle 𝕋 . The nonsqueezing result relies on the aforementioned approximations and the finite-dimensional nonsqueezing theorem of Gromov [14]. Unlike the work of Kuksin [22] which initiated the investigation of non-squeezing results for infinite dimensional Hamiltonian systems, the nonsqueezing argument here does not construct a capacity directly. In this way our...

Nouvelles formulations intégrales pour les problèmes de diffraction d’ondes

David P. Levadoux, Bastiaan L. Michielsen (2004)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We present an integral equation method for solving boundary value problems of the Helmholtz equation in unbounded domains. The method relies on the factorisation of one of the Calderón projectors by an operator approximating the exterior admittance (Dirichlet to Neumann) operator of the scattering obstacle. We show how the pseudo-differential calculus allows us to construct such approximations and that this yields integral equations without internal resonances and being well-conditioned at all frequencies....

Nouvelles formulations intégrales pour les problèmes de diffraction d'ondes

David P. Levadoux, Bastiaan L. Michielsen (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We present an integral equation method for solving boundary value problems of the Helmholtz equation in unbounded domains. The method relies on the factorisation of one of the Calderón projectors by an operator approximating the exterior admittance (Dirichlet to Neumann) operator of the scattering obstacle. We show how the pseudo-differential calculus allows us to construct such approximations and that this yields integral equations without internal resonances and being well-conditioned at all...

Currently displaying 421 – 440 of 603