Displaying 441 – 460 of 603

Showing per page

Nouvelles propriétés des courbes et relation de dispersion en élasticité linéaire

Tark Bouhennache, Yves Dermenjian (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

In the case of an elastic strip we exhibit two properties of dispersion curves λn,n ≥ 1, that were not pointed out previously. We show cases where λ'n(0) = λ''n(0) = λ'''n(0) = 0 and we point out that these curves are not automatically monotoneous on + . The non monotonicity was an open question (see [2], for example) and, for the first time, we give a rigourous answer. Recall the characteristic property of the dispersion curves: {λn(p);n ≥ 1} is the set of eigenvalues of Ap, counted with their...

Novel method for generalized stability analysis of nonlinear impulsive evolution equations

JinRong Wang, Yong Zhou, Wei Wei (2012)

Kybernetika

In this paper, we discuss some generalized stability of solutions to a class of nonlinear impulsive evolution equations in the certain piecewise essentially bounded functions space. Firstly, stabilization of solutions to nonlinear impulsive evolution equations are studied by means of fixed point methods at an appropriate decay rate. Secondly, stable manifolds for the associated singular perturbation problems with impulses are compared with each other. Finally, an example on initial boundary value...

Null Condition for Semilinear Wave Equation with Variable Coefficients

Catalano, Fabio (1999)

Serdica Mathematical Journal

∗The author was partially supported by M.U.R.S.T. Progr. Nazionale “Problemi Non Lineari...”In this work we analyse the nonlinear Cauchy problem (∂tt − ∆)u(t, x) = ( λg + O(1/(1 + t + |x|)^a) ) ) ∇t,x u(t, x), ∇t,x u(t, x) ), whit initial data u(0, x) = e u0 (x), ut (0, x) = e u1 (x). We assume a ≥ 1, x ∈ R^n (n ≥ 3) and g the matrix related to the Minkowski space. It can be considerated a pertubation of the case when the quadratic term has constant coefficient λg (see Klainerman [6]) We...

Null controllability of a coupled model in population dynamics

Younes Echarroudi (2023)

Mathematica Bohemica

We are concerned with the null controllability of a linear coupled population dynamics system or the so-called prey-predator model with Holling type I functional response of predator wherein both equations are structured in age and space. It is worth mentioning that in our case, the space variable is viewed as the “gene type” of population. The studied system is with two different dispersion coefficients which depend on the gene type variable and degenerate in the boundary. This system will be governed...

Null controllability of degenerate parabolic equations of Grushin and Kolmogorov type

Karine Beauchard (2011/2012)

Séminaire Laurent Schwartz — EDP et applications

The goal of this note is to present the results of the references [5] and [4]. We study the null controllability of the parabolic equations associated with the Grushin-type operator x 2 + | x | 2 γ y 2 ( γ > 0 ) in the rectangle ( x , y ) ( - 1 , 1 ) × ( 0 , 1 ) or with the Kolmogorov-type operator v γ x f + v 2 f ( γ { 1 , 2 } ) in the rectangle ( x , v ) 𝕋 × ( - 1 , 1 ) , under an additive control supported in an open subset ω of the space domain.We prove that the Grushin-type equation is null controllable in any positive time for γ < 1 and that there is no time for which it is null controllable for γ > 1 ....

Null controllability of Grushin-type operators in dimension two

Karine Beauchard, Piermarco Cannarsa, Roberto Guglielmi (2014)

Journal of the European Mathematical Society

We study the null controllability of the parabolic equation associated with the Grushin-type operator A = x 2 + x 2 γ γ 2 , ( γ > 0 ) , in the rectangle Ω = ( - 1 , 1 ) × ( 0 , 1 ) , under an additive control supported in an open subset ω of Ω . We prove that the equation is null controllable in any positive time for γ < 1 and that there is no time for which it is null controllable for γ > 1 . In the transition regime γ = 1 and when ω is a strip ω = ( a , b ) × ( 0 , 1 ) ( 0 < a , b 1 ) ), a positive minimal time is required for null controllability. Our approach is based on the fact that, thanks to the particular...

Null controllability of nonlinear convective heat equations

Sebastian Aniţa, Viorel Barbu (2010)

ESAIM: Control, Optimisation and Calculus of Variations

The internal and boundary exact null controllability of nonlinear convective heat equations with homogeneous Dirichlet boundary conditions are studied. The methods we use combine Kakutani fixed point theorem, Carleman estimates for the backward adjoint linearized system, interpolation inequalities and some estimates in the theory of parabolic boundary value problems in Lk.

Currently displaying 441 – 460 of 603