Displaying 501 – 520 of 603

Showing per page

Numerical approximations of parabolic differential functional equations with the initial boundary conditions of the Neumann type

Roman Ciarski (2004)

Annales Polonici Mathematici

The aim of this paper is to present a numerical approximation for quasilinear parabolic differential functional equations with initial boundary conditions of the Neumann type. The convergence result is proved for a difference scheme with the property that the difference operators approximating mixed derivatives depend on the local properties of the coefficients of the differential equation. A numerical example is given.

Numerical Approximations of the Dynamical System Generated by Burgers’ Equation with Neumann–Dirichlet Boundary Conditions

Edward J. Allen, John A. Burns, David S. Gilliam (2013)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Using Burgers’ equation with mixed Neumann–Dirichlet boundary conditions, we highlight a problem that can arise in the numerical approximation of nonlinear dynamical systems on computers with a finite precision floating point number system. We describe the dynamical system generated by Burgers’ equation with mixed boundary conditions, summarize some of its properties and analyze the equilibrium states for finite dimensional dynamical systems that are generated by numerical approximations of this...

Numerical Approximations of the Relative Rearrangement: The piecewise linear case. Application to some Nonlocal Problems

Jean-Michel Rakotoson, Maria Luisa Seoane (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We first prove an abstract result for a class of nonlocal problems using fixed point method. We apply this result to equations revelant from plasma physic problems. These equations contain terms like monotone or relative rearrangement of functions. So, we start the approximation study by using finite element to discretize this nonstandard quantities. We end the paper by giving a numerical resolution of a model containing those terms.

Numerical aspects of the identification of thermal characteristics using the hot-wire method

Vala, Jiří (2013)

Programs and Algorithms of Numerical Mathematics

The hot-wire method, based on the recording of the temperature development in time in a testing sample, supplied by a probe with its own thermal source, is useful to evaluate the thermal conductivity of materials under extremal loads, in particular in refractory brickworks. The formulae in the technical standards come from the analytical solution of the non-stationary equation of heat conduction in cylindric (finally only polar) coordinates for a simplified formulation of boundary conditions, neglecting...

Numerical aspects of the nonlinear Schrödinger equation in the semiclassical limit in a supercritical regime

Rémi Carles, Bijan Mohammadi (2011)

ESAIM: Mathematical Modelling and Numerical Analysis

We study numerically the semiclassical limit for the nonlinear Schrödinger equation thanks to a modification of the Madelung transform due to Grenier. This approach allows for the presence of vacuum. Even if the mesh size and the time step do not depend on the Planck constant, we recover the position and current densities in the semiclassical limit, with a numerical rate of convergence in accordance with the theoretical results, before shocks appear in the limiting Euler equation. By using simple...

Numerical aspects of the nonlinear Schrödinger equation in the semiclassical limit in a supercritical regime

Rémi Carles, Bijan Mohammadi (2011)

ESAIM: Mathematical Modelling and Numerical Analysis

We study numerically the semiclassical limit for the nonlinear Schrödinger equation thanks to a modification of the Madelung transform due to Grenier. This approach allows for the presence of vacuum. Even if the mesh size and the time step do not depend on the Planck constant, we recover the position and current densities in the semiclassical limit, with a numerical rate of convergence in accordance with the theoretical results, before shocks appear in the limiting Euler equation. By using simple...

Numerical boundary layers for hyperbolic systems in 1-D

Claire Chainais-Hillairet, Emmanuel Grenier (2001)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

The aim of this paper is to investigate the stability of boundary layers which appear in numerical solutions of hyperbolic systems of conservation laws in one space dimension on regular meshes. We prove stability under a size condition for Lax Friedrichs type schemes and inconditionnal stability in the scalar case. Examples of unstable boundary layers are also given.

Numerical boundary layers for hyperbolic systems in 1-D

Claire Chainais-Hillairet, Emmanuel Grenier (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

The aim of this paper is to investigate the stability of boundary layers which appear in numerical solutions of hyperbolic systems of conservation laws in one space dimension on regular meshes. We prove stability under a size condition for Lax Friedrichs type schemes and inconditionnal stability in the scalar case. Examples of unstable boundary layers are also given.

Numerical comparisons of two long-wave limit models

Stéphane Labbé, Lionel Paumond (2004)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

The Benney-Luke equation (BL) is a model for the evolution of three-dimensional weakly nonlinear, long water waves of small amplitude. In this paper we propose a nearly conservative scheme for the numerical resolution of (BL). Moreover, it is known (Paumond, Differential Integral Equations 16 (2003) 1039–1064; Pego and Quintero, Physica D 132 (1999) 476–496) that (BL) is linked to the Kadomtsev-Petviashvili equation for almost one-dimensional waves propagating in one direction. We study here numerically...

Numerical comparisons of two long-wave limit models

Stéphane Labbé, Lionel Paumond (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

The Benney-Luke equation (BL) is a model for the evolution of three-dimensional weakly nonlinear, long water waves of small amplitude. In this paper we propose a nearly conservative scheme for the numerical resolution of (BL). Moreover, it is known (Paumond, Differential Integral Equations16 (2003) 1039–1064; Pego and Quintero, Physica D132 (1999) 476–496) that (BL) is linked to the Kadomtsev-Petviashvili equation for almost one-dimensional waves propagating in one direction. We study here numerically...

Numerical computation of solitons for optical systems

Laurent Di Menza (2009)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In this paper, we present numerical methods for the determination of solitons, that consist in spatially localized stationary states of nonlinear scalar equations or coupled systems arising in nonlinear optics. We first use the well-known shooting method in order to find excited states (characterized by the number k of nodes) for the classical nonlinear Schrödinger equation. Asymptotics can then be derived in the limits of either large k are large nonlinear exponents σ . In a second part, we compute...

Currently displaying 501 – 520 of 603