Displaying 501 – 520 of 1045

Showing per page

The nonlinear future stability of the FLRW family of solutions to the irrotational Euler-Einstein system with a positive cosmological constant

Igor Rodnianski, Jared Speck (2013)

Journal of the European Mathematical Society

In this article, we study small perturbations of the family of Friedmann-Lemaître-Robertson-Walker cosmological background solutions to the coupled Euler-Einstein system with a positive cosmological constant in 1 + 3 spacetime dimensions. The background solutions model an initially uniform quiet fluid of positive energy density evolving in a spacetime undergoing exponentially accelerated expansion. Our nonlinear analysis shows that under the equation of state p = c 2 ρ , 0 < c 2 < 1 / 3 , the background metric + fluid solutions...

The nonlinear membrane model : a Young measure and varifold formulation

Med Lamine Leghmizi, Christian Licht, Gérard Michaille (2005)

ESAIM: Control, Optimisation and Calculus of Variations

We establish two new formulations of the membrane problem by working in the space of W Γ 0 1 , p ( Ω , 𝐑 3 ) -Young measures and W Γ 0 1 , p ( Ω , 𝐑 3 ) -varifolds. The energy functional related to these formulations is obtained as a limit of the 3 d formulation of the behavior of a thin layer for a suitable variational convergence associated with the narrow convergence of Young measures and with some weak convergence of varifolds. The interest of the first formulation is to encode the oscillation informations on the gradients minimizing sequences...

The nonlinear membrane model: a Young measure and varifold formulation

Med Lamine Leghmizi, Christian Licht, Gérard Michaille (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We establish two new formulations of the membrane problem by working in the space of W Γ 0 1 , p ( Ω , 𝐑 3 ) -Young measures and W Γ 0 1 , p ( Ω , 𝐑 3 ) -varifolds. The energy functional related to these formulations is obtained as a limit of the 3d formulation of the behavior of a thin layer for a suitable variational convergence associated with the narrow convergence of Young measures and with some weak convergence of varifolds. The interest of the first formulation is to encode the oscillation informations on the gradients minimizing...

The non-uniqueness of the limit solutions of the scalar Chern-Simons equations with signed measures

Adilson Eduardo Presoto (2021)

Mathematica Bohemica

We investigate the effect of admitting signed measures as a datum at the scalar Chern-Simons equation - Δ u + e u ( e u - 1 ) = μ in Ω with the Dirichlet boundary condition. Approximating μ by a sequence ( μ n ) n of L 1 functions or finite signed measures such that this equation has a solution u n for each n , we are interested in establishing the convergence of the sequence ( u n ) n to a function u # and describing the form of the measure which appears on the right-hand side of the scalar Chern-Simons equation solved by u # .

The null condition and global existence for nonlinear wave equations on slowly rotating Kerr spacetimes

Jonathan Luk (2013)

Journal of the European Mathematical Society

We study a semilinear equation with derivatives satisfying a null condition on slowly rotating Kerr spacetimes. We prove that given sufficiently small initial data, the solution exists globally in time and decays with a quantitative rate to the trivial solution. The proof uses the robust vector field method. It makes use of the decay properties of the linear wave equation on Kerr spacetime, in particular the improved decay rates in the region { r t 4 } .

The numerical interface coupling of nonlinear hyperbolic systems of conservation laws : II. The case of systems

Edwige Godlewski, Kim-Claire Le Thanh, Pierre-Arnaud Raviart (2005)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We study the theoretical and numerical coupling of two hyperbolic systems of conservation laws at a fixed interface. As already proven in the scalar case, the coupling preserves in a weak sense the continuity of the solution at the interface without imposing the overall conservativity of the coupled model. We develop a detailed analysis of the coupling in the linear case. In the nonlinear case, we either use a linearized approach or a coupling method based on the solution of a Riemann problem. We...

The numerical interface coupling of nonlinear hyperbolic systems of conservation laws: II. The case of systems

Edwige Godlewski, Kim-Claire Le Thanh, Pierre-Arnaud Raviart (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We study the theoretical and numerical coupling of two hyperbolic systems of conservation laws at a fixed interface. As already proven in the scalar case, the coupling preserves in a weak sense the continuity of the solution at the interface without imposing the overall conservativity of the coupled model. We develop a detailed analysis of the coupling in the linear case. In the nonlinear case, we either use a linearized approach or a coupling method based on the solution of a Riemann problem....

Currently displaying 501 – 520 of 1045