The multidimensional -transform and its use in solution of partial difference equations
The definition of multiple layer potential for the biharmonic equation in is given. In order to represent the solution of Dirichlet problem by means of such a potential, a singular integral system, whose symbol determinant identically vanishes, is considered. The concept of bilateral reduction is introduced and employed for investigating such a system.
Let Ω be a bounded domain in with smooth boundary ∂Ω and let L denote a second order linear elliptic differential operator and a mapping from into itself with compact inverse, with eigenvalues , each repeated according to its multiplicity, 0 < λ1 < λ2 < λ3 ≤ ... ≤ λi ≤ ... → ∞. We consider a semilinear elliptic Dirichlet problem in Ω, u=0 on ∂ Ω. We assume that , and f is generated by and . We show a relation between the multiplicity of solutions and source terms in the equation....
We formulate a boundary value problem for the Navier-Stokes equations with prescribed u·n, curl u·n and alternatively (∂u/∂n)·n or curl²u·n on the boundary. We deal with the question of existence of a steady weak solution.
We study the motion of a viscous incompressible fluid filling the whole three-dimensional space exterior to a rigid body, that is rotating with constant angular velocity ω, under the action of external force f. By using a frame attached to the body, the equations are reduced to (1.1) in a fixed exterior domain D. Given f = divF with , we consider this problem in D × ℝ and prove that there exists a unique solution when F and |ω| are sufficiently small. If, in particular, the external force for...
In this note we prove the existence of extremal solutions of the quasilinear Neumann problem , a.e. on , , in the order interval , where and are respectively a lower and an upper solution of the Neumann problem.
In the paper we study the equation , where is a degenerate elliptic operator, with Neumann boundary condition in a bounded open set . We prove existence and uniqueness of solutions in the space for the Neumann problem.
The solution of the weak Neumann problem for the Laplace equation with a distribution as a boundary condition is studied on a general open set in the Euclidean space. It is shown that the solution of the problem is the sum of a constant and the Newtonian potential corresponding to a distribution with finite energy supported on . If we look for a solution of the problem in this form we get a bounded linear operator. Under mild assumptions on a necessary and sufficient condition for the solvability...