Evolutionary equation of inertial waves in 3-D multiply connected domain with Dirichlet boundary condition.
The G-function formalism has been widely used in the context of evolutionary games for identifying evolutionarily stable strategies (ESS). This formalism was developed for and applied to point processes. Here, we examine the G-function formalism in the settings of spatial evolutionary games and strategy dynamics, based on reaction-diffusion models. We start by extending the point process maximum principle to reaction-diffusion models with homogeneous, locally stable surfaces. We then develop...
Rate-independent problems are considered, where the stored energy density is a function of the gradient. The stored energy density may not be quasiconvex and is assumed to grow linearly. Moreover, arbitrary behaviour at infinity is allowed. In particular, the stored energy density is not required to coincide at infinity with a positively 1-homogeneous function. The existence of a rate-independent process is shown in the so-called energetic formulation.
We prove the exact boundary controllability of the 3-D Euler equation of incompressible inviscid fluids on a regular connected bounded open set when the control operates on an open part of the boundary that meets any of the connected components of the boundary.
We study the boundary controllability of a nonlinear Korteweg–de Vries equation with the Dirichlet boundary condition on an interval with a critical length for which it has been shown by Rosier that the linearized control system around the origin is not controllable. We prove that the nonlinear term gives the local controllability around the origin.
We study the exact boundary controllability of two coupled one dimensional wave equations with a control acting only in one equation. The problem is transformed into a moment problem. This framework has been used in control theory of distributed parameter systems since the classical works of A.G. Butkovsky, H.O. Fattorini and D.L. Russell in the late 1960s to the early 1970s. We use recent results on the Riesz basis property of exponential divided differences.
By means of a direct and constructive method based on the theory of semi-global C1 solution, the local exact boundary observability is established for one-dimensional first order quasilinear hyperbolic systems with general nonlinear boundary conditions. An implicit duality between the exact boundary controllability and the exact boundary observability is then shown in the quasilinear case.
Several kinds of exact synchronizations and the generalized exact synchronization are introduced for a coupled system of 1-D wave equations with various boundary conditions and we show that these synchronizations can be realized by means of some boundary controls.