Displaying 561 – 580 of 1309

Showing per page

Evolution by the vortex filament equation of curves with a corner

Valeria Banica (2013)

Journées Équations aux dérivées partielles

In this proceedings article we shall survey a series of results on the stability of self-similar solutions of the vortex filament equation. This equation is a geometric flow for curves in 3 and it is used as a model for the evolution of a vortex filament in fluid mechanics. The main theorem give, under suitable assumptions, the existence and description of solutions generated by curves with a corner, for positive and negative times. Its companion theorem describes the evolution of perturbations...

Évolution de tourbillon à support compact

Dragoş Iftimie (1999)

Journées équations aux dérivées partielles

On considère l’équation d’Euler incompressible dans le plan. Dans le cas où le tourbillon est positif et à support compact on montre que le support du tourbillon croît au plus comme O [ ( t log t ) ] 1 / 4 , améliorant la borne O ( t 1 / 3 ) obtenue par C. Marchioro. Dans le cas où le tourbillon change de signe, on donne un exemple de tourbillon initial tel que la croissance du diamètre du support du tourbillon est exactement O ( t ) . Enfin, dans le cas du demi-plan et du tourbillon initial positif et à support compact, on montre que le...

Évolution d'une singularité de type cusp dans une poche de tourbillon.

Raphaël Danchin (2000)

Revista Matemática Iberoamericana

We investigate the evolution of singularities in the boundary of a vortex patch for two-dimensional incompressible Euler equations. We are particularly interested in cusp-like singularities which, according to numerical simulations, are stable. In this paper, we first prove that, unlike the case of a corner-like singularity, the cusp-like singularity generates a lipschitzian velocity. We then state a global result of persistence of conormal regularity with respect to vector fields vanishing at a...

Evolution equations governed by Lipschitz continuous non-autonomous forms

Ahmed Sani, Hafida Laasri (2015)

Czechoslovak Mathematical Journal

We prove L 2 -maximal regularity of the linear non-autonomous evolutionary Cauchy problem u ˙ ( t ) + A ( t ) u ( t ) = f ( t ) for a.e. t [ 0 , T ] , u ( 0 ) = u 0 , where the operator A ( t ) arises from a time depending sesquilinear form 𝔞 ( t , · , · ) on a Hilbert space H with constant domain V . We prove the maximal regularity in H when these forms are time Lipschitz continuous. We proceed by approximating the problem using the frozen coefficient method developed by El-Mennaoui, Keyantuo, Laasri (2011), El-Mennaoui, Laasri (2013), and Laasri (2012). As a consequence, we obtain an invariance...

Evolution equations in non-cylindrical domains

Piermarco Cannarsa, Giuseppe Da Prato, Jean-Paul Zolésio (1989)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

We develolp a new method to solve an evolution equation in a non-cylindrical domain, by reduction to an abstract evolution equation..

Evolution equations with parameter in the hyperbolic case

Jan Bochenek, Teresa Winiarska (1996)

Annales Polonici Mathematici

The purpose of this paper is to give theorems on continuity and differentiability with respect to (h,t) of the solution of the initial value problem du/dt = A(h,t)u + f(h,t), u(0) = u₀(h) with parameter h Ω m in the “hyperbolic” case.

Evolution in a migrating population model

Włodzimierz Bąk, Tadeusz Nadzieja (2012)

Applicationes Mathematicae

We consider a model of migrating population occupying a compact domain Ω in the plane. We assume the Malthusian growth of the population at each point x ∈ Ω and that the mobility of individuals depends on x ∈ Ω. The evolution of the probability density u(x,t) that a randomly chosen individual occupies x ∈ Ω at time t is described by the nonlocal linear equation u t = Ω φ ( y ) u ( y , t ) d y - φ ( x ) u ( x , t ) , where φ(x) is a given function characterizing the mobility of individuals living at x. We show that the asymptotic behaviour of u(x,t)...

Evolution of convex entire graphs by curvature flows

Roberta Alessandroni, Carlo Sinestrari (2015)

Geometric Flows

We consider the evolution of an entire convex graph in euclidean space with speed given by a symmetric function of the principal curvatures. Under suitable assumptions on the speed and on the initial data, we prove that the solution exists for all times and it remains a graph. In addition, after appropriate rescaling, it converges to a homothetically expanding solution of the flow. In this way, we extend to a class of nonlinear speeds the well known results of Ecker and Huisken for the mean curvature...

Evolution Problems and Minimizing Movements

Ugo Gianazza, Massimo Gobbino, Giuseppe Savarè (1994)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

We recall the definition of Minimizing Movements, suggested by E. De Giorgi, and we consider some applications to evolution problems. With regards to ordinary differential equations, we prove in particular a generalization of maximal slope curves theory to arbitrary metric spaces. On the other hand we present a unifying framework in which some recent conjectures about partial differential equations can be treated and solved. At the end we consider some open problems.

Currently displaying 561 – 580 of 1309