The search session has expired. Please query the service again.
Displaying 561 –
580 of
1318
We prove Lipschitz continuity for local
minimizers of integral functionals of the Calculus of Variations
in the vectorial case, where the energy density depends explicitly
on the space variables and has general growth with respect to the
gradient. One of the models is
with h a convex function with general growth (also exponential behaviour
is allowed).
In this proceedings article we shall survey a series of results on the stability of self-similar solutions of the vortex filament equation. This equation is a geometric flow for curves in and it is used as a model for the evolution of a vortex filament in fluid mechanics. The main theorem give, under suitable assumptions, the existence and description of solutions generated by curves with a corner, for positive and negative times. Its companion theorem describes the evolution of perturbations...
On considère l’équation d’Euler incompressible dans le plan. Dans le cas où le tourbillon est positif et à support compact on montre que le support du tourbillon croît au plus comme , améliorant la borne obtenue par C. Marchioro. Dans le cas où le tourbillon change de signe, on donne un exemple de tourbillon initial tel que la croissance du diamètre du support du tourbillon est exactement . Enfin, dans le cas du demi-plan et du tourbillon initial positif et à support compact, on montre que le...
We investigate the evolution of singularities in the boundary of a vortex patch for two-dimensional incompressible Euler equations. We are particularly interested in cusp-like singularities which, according to numerical simulations, are stable. In this paper, we first prove that, unlike the case of a corner-like singularity, the cusp-like singularity generates a lipschitzian velocity. We then state a global result of persistence of conormal regularity with respect to vector fields vanishing at a...
We prove -maximal regularity of the linear non-autonomous evolutionary Cauchy problem
where the operator arises from a time depending sesquilinear form on a Hilbert space with constant domain We prove the maximal regularity in when these forms are time Lipschitz continuous. We proceed by approximating the problem using the frozen coefficient method developed by El-Mennaoui, Keyantuo, Laasri (2011), El-Mennaoui, Laasri (2013), and Laasri (2012). As a consequence, we obtain an invariance...
We develolp a new method to solve an evolution equation in a non-cylindrical domain, by reduction to an abstract evolution equation..
The purpose of this paper is to give theorems on continuity and differentiability with respect to (h,t) of the solution of the initial value problem du/dt = A(h,t)u + f(h,t), u(0) = u₀(h) with parameter in the “hyperbolic” case.
We consider a model of migrating population occupying a compact domain Ω in the plane. We assume the Malthusian growth of the population at each point x ∈ Ω and that the mobility of individuals depends on x ∈ Ω. The evolution of the probability density u(x,t) that a randomly chosen individual occupies x ∈ Ω at time t is described by the nonlocal linear equation , where φ(x) is a given function characterizing the mobility of individuals living at x. We show that the asymptotic behaviour of u(x,t)...
We consider the evolution of an entire convex graph in euclidean space with speed given by a symmetric function of the principal curvatures. Under suitable assumptions on the speed and on the initial data, we prove that the solution exists for all times and it remains a graph. In addition, after appropriate rescaling, it converges to a homothetically expanding solution of the flow. In this way, we extend to a class of nonlinear speeds the well known results of Ecker and Huisken for the mean curvature...
We recall the definition of Minimizing Movements, suggested by E. De Giorgi, and we consider some applications to evolution problems. With regards to ordinary differential equations, we prove in particular a generalization of maximal slope curves theory to arbitrary metric spaces. On the other hand we present a unifying framework in which some recent conjectures about partial differential equations can be treated and solved. At the end we consider some open problems.
Currently displaying 561 –
580 of
1318