A note on the unique solvability of an inverse problem with integral overdetermination.
In this note, we consider some elliptic systems on a smooth domain of . By using the maximum principle, we can get a more general and complete results of the identical property of positive solution pair, and thus classify the structure of all positive solutions depending on the nonlinarities easily.
In this note, we discuss certain generalizations of γ-radonifying operators and their applications to the regularity for linear stochastic evolution equations on some special Banach spaces. Furthermore, we also consider a more general class of operators, namely the so-called summing operators and discuss the application to the compactness of the heat semi-group between weighted -spaces.
A modification of a classical number-theorem on Diophantine approximations is used for generalizing H. kielhöfer's result on bifurcations of nontrivial periodic solutions to nonlinear wave equations.
Data assimilation refers to any methodology that uses partial observational data and the dynamics of a system for estimating the model state or its parameters. We consider here a non classical approach to data assimilation based in null controllability introduced in [Puel, C. R. Math. Acad. Sci. Paris 335 (2002) 161–166] and [Puel, SIAM J. Control Optim. 48 (2009) 1089–1111] and we apply it to oceanography. More precisely, we are interested in developing this methodology to recover the unknown final...
Data assimilation refers to any methodology that uses partial observational data and the dynamics of a system for estimating the model state or its parameters. We consider here a non classical approach to data assimilation based in null controllability introduced in [Puel, C. R. Math. Acad. Sci. Paris335 (2002) 161–166] and [Puel, SIAM J. Control Optim.48 (2009) 1089–1111] and we apply it to oceanography. More precisely, we are interested in developing this methodology to recover the unknown final...
In this paper we consider the problem of detecting pollution in some non linear parabolic systems using the sentinel method. For this purpose we develop and analyze a new approach to the discretization which pays careful attention to the stability of the solution. To illustrate convergence properties we give some numerical results that present good properties and show new ways for building discrete sentinels.