The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 761 –
780 of
1318
We consider the initial-boundary value problem for a nonlinear higher-order nonlinear hyperbolic equation in a bounded domain. The existence of global weak solutions for this problem is established by using the potential well theory combined with Faedo-Galarkin method. We also established the asymptotic behavior of global solutions as by applying the Lyapunov method.
For a class of semi-abstract evolution equations for sections on vector bundles on a three-dimensional compact manifold we prove that for initial values with certain symmetries strong solutions exist for all times. In case these solutions become small after some time, strong solutions exist also for small perturbations of these initial values. Many systems from fluid mechanics are included in this class.
This paper deals with a mixed boundary-value problem of Ventcel type in two variables. The peculiarity of the Ventcel problem lies in the fact that one of the boundary conditions involves second order differentiation along the boundary. Under suitable assumptions on the data, we first give the definition of a weak solution, and then we prove that the problem is uniquely solvable. We also consider a particular case arising in real-world applications and discuss the resulting model.
A thermodynamically consistent model of shape memory alloys in three dimensions is studied. The thermoelasticity system, based on the strain tensor, its gradient and the absolute temperature, generalizes the well-known one-dimensional Falk model. Under simplifying structural assumptions we prove global in time existence and uniqueness of the solution.
Currently displaying 761 –
780 of
1318