Space of local fields in integrable field theory and deformed abelian differentials.
The paper presents the theory of the discontinuous Galerkin finite element method for the space-time discretization of a linear nonstationary convection-diffusion-reaction initial-boundary value problem. The discontinuous Galerkin method is applied separately in space and time using, in general, different nonconforming space grids on different time levels and different polynomial degrees and in space and time discretization, respectively. In the space discretization the nonsymmetric interior...
We establish the well-posedness of boundary value problems for a family of nonlinear higherorder parabolic equations which comprises some models of epitaxial growth and thin film theory. In order to achieve this result, we provide a unified framework for constructing local mild solutions in C0([0, T]; Lp(Ω)) by introducing appropriate time-weighted Lebesgue norms inspired by a priori estimates of solutions. This framework allows us to obtain global existence of solutions under the proviso that initial...
The instationary Stokes and Navier−Stokes equations are considered in a simultaneously space-time variational saddle point formulation, so involving both velocities u and pressure p. For the instationary Stokes problem, it is shown that the corresponding operator is a boundedly invertible linear mapping between H1 and H'2, both Hilbert spaces H1 and H2 being Cartesian products of (intersections of) Bochner spaces, or duals of those. Based on these results, the operator that corresponds to the Navier−Stokes...
The numerical approximation of parametric partial differential equations is a computational challenge, in particular when the number of involved parameter is large. This paper considers a model class of second order, linear, parametric, elliptic PDEs on a bounded domain D with diffusion coefficients depending on the parameters in an affine manner. For such models, it was shown in [9, 10] that under very weak assumptions on the diffusion coefficients, the entire family of solutions to such equations...
We develop the analysis of stabilized sparse tensor-product finite element methods for high-dimensional, non-self-adjoint and possibly degenerate second-order partial differential equations of the form , , where is a symmetric positive semidefinite matrix, using piecewise polynomials of degree p ≥ 1. Our convergence analysis is based on new high-dimensional approximation results in sparse tensor-product spaces. We show that the error between the analytical solution u and its stabilized sparse...
We present a sparse grid/hyperbolic cross discretization for many-particle problems. It involves the tensor product of a one-particle multilevel basis. Subsequent truncation of the associated series expansion then results in a sparse grid discretization. Here, depending on the norms involved, different variants of sparse grid techniques for many-particle spaces can be derived that, in the best case, result in complexities and error estimates which are independent of the number of particles. Furthermore...
Spatial dynamics of fibrin clot formation in non-stirred system activated by glass surface was studied as a function of FIX activity. Haemophilia B plasma was obtained from untreated patients with different levels of FIX deficiency and from severe haemophilia B patient treated with FIX concentrate (Ahemphil B) during its clearance with half-life t1/2=12 hours. As reported previously (Ataullakhanov et al. Biochim Biophys Acta 1998; 1425: 453-468), clot growth in space showed two distinct phases:...
We consider a reaction-diffusion system of the activator-inhibitor type with boundary conditions given by inclusions. We show that there exists a bifurcation point at which stationary but spatially nonconstant solutions (spatial patterns) bifurcate from the branch of trivial solutions. This bifurcation point lies in the domain of stability of the trivial solution to the same system with Dirichlet and Neumann boundary conditions, where a bifurcation of this classical problem is excluded.
This paper uses minimization methods and renormalized functionals to find spatially heteroclinic solutions for some classes of semilinear elliptic partial differential equations
This paper uses minimization methods and renormalized functionals to find spatially heteroclinic solutions for some classes of semilinear elliptic partial differential equations