Displaying 901 – 920 of 2279

Showing per page

A Q-scheme for a class of systems of coupled conservation laws with source term. Application to a two-layer 1-D shallow water system

Manuel Castro, Jorge Macías, Carlos Parés (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

The goal of this paper is to construct a first-order upwind scheme for solving the system of partial differential equations governing the one-dimensional flow of two superposed immiscible layers of shallow water fluids. This is done by generalizing a numerical scheme presented by Bermúdez and Vázquez-Cendón [3, 6, 27] for solving one-layer shallow water equations, consisting in a Q-scheme with a suitable treatment of the source terms. The difficulty in the two layer system comes from the coupling...

A quantitative asymptotic theorem for contraction semigroups with countable unitary spectrum

Charles Batty, Zdzisław Brzeźniak, David Greenfield (1996)

Studia Mathematica

Let T be a semigroup of linear contractions on a Banach space X, and let X s ( T ) = x X : l i m s T ( s ) x = 0 . Then X s ( T ) is the annihilator of the bounded trajectories of T*. If the unitary spectrum of T is countable, then X s ( T ) is the annihilator of the unitary eigenvectors of T*, and l i m s T ( s ) x = i n f x - y : y X s ( T ) for each x in X.

A quasi-dual Lagrange multiplier space for serendipity mortar finite elements in 3D

Bishnu P. Lamichhane, Barbara I. Wohlmuth (2004)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Domain decomposition techniques provide a flexible tool for the numerical approximation of partial differential equations. Here, we consider mortar techniques for quadratic finite elements in 3D with different Lagrange multiplier spaces. In particular, we focus on Lagrange multiplier spaces which yield optimal discretization schemes and a locally supported basis for the associated constrained mortar spaces in case of hexahedral triangulations. As a result, standard efficient iterative solvers as...

A quasi-dual Lagrange multiplier space for serendipity mortar finite elements in 3D

Bishnu P. Lamichhane, Barbara I. Wohlmuth (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Domain decomposition techniques provide a flexible tool for the numerical approximation of partial differential equations. Here, we consider mortar techniques for quadratic finite elements in 3D with different Lagrange multiplier spaces. In particular, we focus on Lagrange multiplier spaces which yield optimal discretization schemes and a locally supported basis for the associated constrained mortar spaces in case of hexahedral triangulations. As a result, standard efficient iterative solvers...

A quasistatic contact problem with unilateral constraint and slip-dependent friction

Arezki Touzaline (2015)

Applicationes Mathematicae

We consider a mathematical model of a quasistatic contact between an elastic body and an obstacle. The contact is modelled with unilateral constraint and normal compliance, associated to a version of Coulomb's law of dry friction where the coefficient of friction depends on the slip displacement. We present a weak formulation of the problem and establish an existence result. The proofs employ a time-discretization method, compactness and lower semicontinuity arguments.

A quasi-variational inequality problem arising in the modeling of growing sandpiles

John W. Barrett, Leonid Prigozhin (2013)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Existence of a solution to the quasi-variational inequality problem arising in a model for sand surface evolution has been an open problem for a long time. Another long-standing open problem concerns determining the dual variable, the flux of sand pouring down the evolving sand surface, which is also of practical interest in a variety of applications of this model. Previously, these problems were solved for the special case in which the inequality is simply variational. Here, we introduce a regularized...

A radial estimate for the maximal operator associated with the free Schrödinger equation

Sichun Wang (2006)

Studia Mathematica

Let d > 0 be a positive real number and n ≥ 1 a positive integer and define the operator S d and its associated global maximal operator S * * d by ( S d f ) ( x , t ) = 1 / ( 2 π ) e i x · ξ e i t | ξ | d f ̂ ( ξ ) d ξ , f ∈ (ℝⁿ), x ∈ ℝⁿ, t ∈ ℝ, ( S * * d f ) ( x ) = s u p t | 1 / ( 2 π ) e i x · ξ e i t | ξ | d f ̂ ( ξ ) d ξ | , f ∈ (ℝⁿ), x ∈ ℝⁿ, where f̂ is the Fourier transform of f and (ℝⁿ) is the Schwartz class of rapidly decreasing functions. If d = 2, S d f is the solution to the initial value problem for the free Schrödinger equation (cf. (1.3) in this paper). We prove that for radial functions f ∈ (ℝⁿ), if n ≥ 3, 0 < d ≤ 2, and p ≥ 2n/(n-2), the...

Currently displaying 901 – 920 of 2279