Displaying 881 – 900 of 2283

Showing per page

A proof of monotony of the Temple quotients in eigenvalue problems

Karel Rektorys (1984)

Aplikace matematiky

If the so-called Collatz method is applied to get twosided estimates of the first eigenvalue λ 1 , the sequences of the so-called Schwarz quatients (which are upper bounds for λ 1 ) and of the so-called Temple quotients (which are lower bounds) are constructed. While monotony of the first sequence was proved many years ago, monotony of the second one has been proved only recently by F. goerisch and J. Albrecht in their common paper “Die Monotonie der Templeschen Quotienten” (ZAMM, in print). In the present...

A propagation theorem for a class of microfunctions

Andrea D'Agnolo, Giuseppe Zampieri (1990)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Let A be a closed set of M R n , whose conormai cones x + y x * A , x A , have locally empty intersection. We first show in §1 that dist x , A , x M A is a C 1 function. We then represent the n microfunctions of C A | X , X C n , using cohomology groups of O X of degree 1. By the results of § 1-3, we are able to prove in §4 that the sections of C A | X π ˙ - 1 x 0 , x 0 A , satisfy the principle of the analytic continuation in the complex integral manifolds of H ϕ i C i = 1 , , m , ϕ i being a base for the linear hull of γ x 0 * A in T x 0 * M ; in particular we get Γ A × M T * M X C A | X A × M T ˙ * M X = 0 . When A is a half space with C ω -boundary,...

Currently displaying 881 – 900 of 2283