Spectral properties of high contrast band-gap materials and operators on graphs.
We show that the lowest eigenvalue of the magnetic Schrödinger operator on a line bundle over a compact Riemann surface is bounded by the -norm of the magnetic field . This implies a similar bound on the multiplicity of the ground state. An example shows that this degeneracy can indeed be comparable with even in case of the trivial bundle.
2000 Mathematics Subject Classification: 35P20, 35J10, 35Q40.We give a complete pointwise asymptotic expansion for the Spectral Shift Function for Schrödinger operators that are perturbations of the Laplacian on Rn with slowly decaying potentials.
We study various statistics related to the eigenvalues and eigenfunctions of random Hamiltonians in the localized regime. Consider a random Hamiltonian at an energy in the localized phase. Assume the density of states function is not too flat near . Restrict it to some large cube . Consider now , a small energy interval centered at that asymptotically contains infintely many eigenvalues when the volume of the cube grows to infinity. We prove that, with probability one in the large volume...
We discuss spectral and scattering theory of the discrete laplacian limited to a half-space. The interesting properties of such operators stem from the imposed boundary condition and are related to certain phenomena in surface physics.
To every elliptic SG pseudo-differential operator with positive orders, we associate the minimal and maximal operators on , 1 < p < ∞, and prove that they are equal. The domain of the minimal ( = maximal) operator is explicitly computed in terms of a Sobolev space. We prove that an elliptic SG pseudo-differential operator is Fredholm. The essential spectra of elliptic SG pseudo-differential operators with positive orders and bounded SG pseudo-differential operators with orders 0,0 are computed....
The theta series is a classical example of a modular form. In this article we argue that the trace , where is a self-adjoint elliptic pseudo-differential operator of order 1 with periodic bicharacteristic flow, may be viewed as a natural generalization. In particular, we establish approximate functional relations under the action of the modular group. This allows a detailed analysis of the asymptotics of near the real axis, and the proof of logarithm laws and limit theorems for its value...