Displaying 1561 – 1580 of 17469

Showing per page

An existence result for nonlinear evolution equations of second order

Dimitrios A. Kandilakis (1996)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

In this paper we consider a second order differential equation involving the difference of two monotone operators. Using an auxiliary equation, a priori bounds and a compactness argument we show that the differential equation has a local solution. An example is also presented in detail.

An existence result in nonlinear theory of electromagnetic fields

Dorin Iesan, Antonio Scalia (1991)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

This paper is concerned with the nonlinear theory of equilibrium for materials which do not conduct electricity. An existence and uniqueness result is established.

An existence theorem for an hyperbolic differential inclusion in Banach spaces

Mouffak Benchohra, Sotiris K. Ntouyas (2002)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

In this paper, we investigate the existence of solutions on unbounded domain to a hyperbolic differential inclusion in Banach spaces. We shall rely on a fixed point theorem due to Ma which is an extension to multivalued between locally convex topological spaces of Schaefer's theorem.

An existence theorem for the Boussinesq equations with non-Dirichlet boundary conditions

Zdeněk Skalák, Petr Kučera (2000)

Applications of Mathematics

The evolution Boussinesq equations describe the evolution of the temperature and velocity fields of viscous incompressible Newtonian fluids. Very often, they are a reasonable model to render relevant phenomena of flows in which the thermal effects play an essential role. In the paper we prescribe non-Dirichlet boundary conditions on a part of the boundary and prove the existence and uniqueness of solutions to the Boussinesq equations on a (short) time interval. The length of the time interval depends...

An existence theorem for the Yamabe problem on manifolds with boundary

Simon Brendle, Szu-Yu Sophie Chen (2014)

Journal of the European Mathematical Society

Let ( M , g ) be a compact Riemannian manifold with boundary. We consider the problem (first studied by Escobar in 1992) of finding a conformal metric with constant scalar curvature in the interior and zero mean curvature on the boundary. Using a local test function construction, we are able to settle most cases left open by Escobar’s work. Moreover, we reduce the remaining cases to the positive mass theorem.

Currently displaying 1561 – 1580 of 17469