Previous Page 85

Displaying 1681 – 1682 of 1682

Showing per page

Systems with Coulomb interactions

Sylvia Serfaty (2014)

Journées Équations aux dérivées partielles

Systems with Coulomb and logarithmic interactions arise in various settings: an instance is the classical Coulomb gas which in some cases happens to be a random matrix ensemble, another is vortices in the Ginzburg-Landau model of superconductivity, where one observes in certain regimes the emergence of densely packed point vortices forming perfect triangular lattice patterns named Abrikosov lattices, a third is the study of Fekete points which arise in approximation theory. In this review, we describe...

Syzygies of modules and applications to propagation of regularity phenomena.

Alex Meril, Daniele C. Struppa (1990)

Publicacions Matemàtiques

Propagation of regularity is considered for solutions of rectangular systems of infinite order partial differential equations (resp. convolution equations) in spaces of hyperfunctions (resp. C∞ functions and distributions). Known resulys of this kind are recovered as particular cases, when finite order partial differential equations are considered.

Currently displaying 1681 – 1682 of 1682

Previous Page 85