The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1

Displaying 1 – 5 of 5

Showing per page

Recent results on stationary critical Kirchhoff systems in closed manifolds

Emmanuel Hebey, Pierre-Damien Thizy (2013/2014)

Séminaire Laurent Schwartz — EDP et applications

We report on results we recently obtained in Hebey and Thizy [11, 12] for critical stationary Kirchhoff systems in closed manifolds. Let ( M n , g ) be a closed n -manifold, n 3 . The critical Kirchhoff systems we consider are written as a + b j = 1 p M | u j | 2 d v g Δ g u i + j = 1 p A i j u j = U 2 - 2 u i for all i = 1 , , p , where Δ g is the Laplace-Beltrami operator, A is a C 1 -map from M into the space M s p ( ) of symmetric p × p matrices with real entries, the A i j ’s are the components of A , U = ( u 1 , , u p ) , | U | : M is the Euclidean norm of U , 2 = 2 n n - 2 is the critical Sobolev exponent, and we require that u i 0 in M for all i = 1 , , p . We...

Remarks on the blow-up for the Schrödinger equation with critical mass on a plane domain

Valeria Banica (2003)

Journées équations aux dérivées partielles

We concentrate on the analysis of the critical mass blowing-up solutions for the cubic focusing Schrödinger equation with Dirichlet boundary conditions, posed on a plane domain. We bound from below the blow-up rate for bounded and unbounded domains. If the blow-up occurs on the boundary, the blow-up rate is proved to grow faster than ( T - t ) - 1 , the expected one. Moreover, we state that blow-up cannot occur on the boundary, under certain geometric conditions on the domain.

Remarks on the blow-up for the Schrödinger equation with critical mass on a plane domain

Valeria Banica (2004)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

In this paper we concentrate on the analysis of the critical mass blowing-up solutions for the cubic focusing Schrödinger equation with Dirichlet boundary conditions, posed on a plane domain. We bound the blow-up rate from below, for bounded and unbounded domains. If the blow-up occurs on the boundary, the blow-up rate is proved to grow faster than ( T - t ) - 1 , the expected one. Moreover, we show that blow-up cannot occur on the boundary, under certain geometric conditions on the domain.

Currently displaying 1 – 5 of 5

Page 1