The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 81 – 100 of 920

Showing per page

An elliptic semilinear equation with source term involving boundary measures: the subcritical case.

Marie Françoise Bidaut-Véron, Laurent Vivier (2000)

Revista Matemática Iberoamericana

We study the boundary behaviour of the nonnegative solutions of the semilinear elliptic equation in a bounded regular domain Ω of RN (N ≥ 2),⎧   Δu + uq = 0,   in Ω⎨⎩   u = μ,      on ∂Ωwhere 1 < q < (N + 1)/(N - 1) and μ is a Radon measure on ∂Ω. We give a priori estimates and existence results. The lie on the study of superharmonic functions in some weighted Marcinkiewicz spaces.

An Ingham type proof for a two-grid observability theorem

Michel Mehrenberger, Paola Loreti (2008)

ESAIM: Control, Optimisation and Calculus of Variations

Here, we prove the uniform observability of a two-grid method for the semi-discretization of the 1 D -wave equation for a time T > 2 2 ; this time, if the observation is made in ( - T / 2 , T / 2 ) , is optimal and this result improves an earlier work of Negreanu and Zuazua [C. R. Acad. Sci. Paris Sér. I 338 (2004) 413–418]. Our proof follows an Ingham type approach.

An Ingham type proof for a two-grid observability theorem

Paola Loreti, Michel Mehrenberger (2007)

ESAIM: Control, Optimisation and Calculus of Variations

Here, we prove the uniform observability of a two-grid method for the semi-discretization of the 1D-wave equation for a time T > 2 2 ; this time, if the observation is made in ( - T / 2 , T / 2 ) , is optimal and this result improves an earlier work of Negreanu and Zuazua [C. R. Acad. Sci. Paris Sér. I338 (2004) 413–418]. Our proof follows an Ingham type approach.

Currently displaying 81 – 100 of 920