The search session has expired. Please query the service again.
We study elliptic equations with the general nonstandard growth conditions involving Lebesgue measurable functions on . We prove the global regularity of bounded weak solutions of these equations with the Dirichlet boundary condition. Our results generalize the regularity results for the elliptic equations in divergence form not only in the variable exponent case but also in the constant exponent case.
Development of engineering structures and technologies frequently works with advanced materials, whose properties, because of their complicated microstructure, cannot be predicted from experience, unlike traditional materials.
The quality of computational modelling of relevant physical processes, based mostly on the principles of classical thermomechanics, is conditioned by the reliability of constitutive relations, coming from simplified experiments. The paper demonstrates some possibilities of...
For solving the boundary-value problem for potential of a stationary magnetic field in two dimensions in ferromagnetics it is possible to use a linearization based on the succesive approximations. In this paper the convergence of this method is proved under some conditions.
Nonlinear Schrödinger equations (NLS) with strongly singular potential on a bounded domain are considered. If and , then the global existence of weak solutions is confirmed by applying the energy methods established by N. Okazawa, T. Suzuki, T. Yokota (2012). Here is excluded because is not equal to , where is nonnegative and selfadjoint in . On the other hand, if is a smooth and bounded domain with , the Hardy-Poincaré inequality is proved in J. L. Vazquez, E. Zuazua (2000)....
Currently displaying 1 –
6 of
6