The search session has expired. Please query the service again.
Let n ≥ 2 and let Ω ⊂ ℝn be an open set. We prove the boundedness of weak solutions to the problem
where ϕ is a Young function such that the space W 01 L Φ(Ω) is embedded into an exponential or multiple exponential Orlicz space, the nonlinearity f(x, t) has the corresponding critical growth, V(x) is a continuous potential, h ∈ L Φ(Ω) is a non-trivial continuous function and µ ≥ 0 is a small parameter. We consider two classical cases: the case of Ω being an open bounded set and the case of Ω =...
We prove the existence of global attractors for the following semilinear degenerate parabolic equation on :
∂u/∂t - div(σ(x)∇ u) + λu + f(x,u) = g(x),
under a new condition concerning the variable nonnegative diffusivity σ(·) and for an arbitrary polynomial growth order of the nonlinearity f. To overcome some difficulties caused by the lack of compactness of the embeddings, these results are proved by combining the tail estimates method and the asymptotic a priori estimate method.
Under some assumptions on the function p(x), we obtain global gradient estimates for weak solutions of the p(x)-Laplacian type equation in .
Currently displaying 1 –
9 of
9