Displaying 201 – 220 of 386

Showing per page

The Ruelle rotation of Killing vector fields

Konstantin Athanassopoulos (2009)

Colloquium Mathematicae

We present an explicit formula for the Ruelle rotation of a nonsingular Killing vector field of a closed, oriented, Riemannian 3-manifold, with respect to Riemannian volume.

The set of recurrent points of a continuous self-map on compact metric spaces and strong chaos

Lidong Wang, Gongfu Liao, Zhizhi Chen, Xiaodong Duan (2003)

Annales Polonici Mathematici

We discuss the existence of an uncountable strongly chaotic set of a continuous self-map on a compact metric space. It is proved that if a continuous self-map on a compact metric space has a regular shift invariant set then it has an uncountable strongly chaotic set in which each point is recurrent, but is not almost periodic.

The shadowing chain lemma for singular Hamiltonian systems involving strong forces

Marek Izydorek, Joanna Janczewska (2012)

Open Mathematics

We consider a planar autonomous Hamiltonian system :q+∇V(q) = 0, where the potential V: ℝ2 {ζ→ ℝ has a single well of infinite depth at some point ζ and a strict global maximum 0at two distinct points a and b. Under a strong force condition around the singularity ζ we will prove a lemma on the existence and multiplicity of heteroclinic and homoclinic orbits - the shadowing chain lemma - via minimization of action integrals and using simple geometrical arguments.

The simplest shadowing

Jerzy Ombach (1993)

Annales Polonici Mathematici

Two different and easy proofs are presented that a hyperbolic linear homeomorphism of a Banach space admits the shadowing.

The size of the chain recurrent set for generic maps on an n-dimensional locally (n-1)-connected compact space

Katsuya Yokoi (2010)

Colloquium Mathematicae

For n ≥ 1, given an n-dimensional locally (n-1)-connected compact space X and a finite Borel measure μ without atoms at isolated points, we prove that for a generic (in the uniform metric) continuous map f:X → X, the set of points which are chain recurrent under f has μ-measure zero. The same is true for n = 0 (skipping the local connectedness assumption).

The spectral matrices of Toda solitons and the fundamental solution of some discrete heat equations

Luc Haine (2005)

Annales de l’institut Fourier

The Stieltjes spectral matrix measure of the doubly infinite Jacobi matrix associated with a Toda g -soliton is computed, using Sato theory. The result is used to give an explicit expansion of the fundamental solution of some discrete heat equations, in a series of Jackson’s q -Bessel functions. For Askey-Wilson type solitons, this expansion reduces to a finite sum.

The squares of the Laplacian-Dirichlet eigenfunctions are generically linearly independent

Yannick Privat, Mario Sigalotti (2010)

ESAIM: Control, Optimisation and Calculus of Variations

The paper deals with the genericity of domain-dependent spectral properties of the Laplacian-Dirichlet operator. In particular we prove that, generically, the squares of the eigenfunctions form a free family. We also show that the spectrum is generically non-resonant. The results are obtained by applying global perturbations of the domains and exploiting analytic perturbation properties. The work is motivated by two applications: an existence result for the problem of maximizing the rate of...

Currently displaying 201 – 220 of 386