Page 1 Next

Displaying 1 – 20 of 161

Showing per page

A class of stationary stochastic processes

Victor D. Didenko, Natalia A. Rozhenko (2014)

Studia Mathematica

Regular stationary stochastic vector processes whose spectral densities are the boundary values of matrix functions with bounded Nevanlinna characteristic are considered. A criterion for the representability of such processes as output data of linear time invariant dynamical systems is established.

A continuity property for the inverse of Mañé's projection

Zdeněk Skalák (1998)

Applications of Mathematics

Let X be a compact subset of a separable Hilbert space H with finite fractal dimension d F ( X ) , and P 0 an orthogonal projection in H of rank greater than or equal to 2 d F ( X ) + 1 . For every δ > 0 , there exists an orthogonal projection P in H of the same rank as P 0 , which is injective when restricted to X and such that P - P 0 < δ . This result follows from Mañé’s paper. Thus the inverse ( P | X ) - 1 of the restricted mapping P | X X P X is well defined. It is natural to ask whether there exists a universal modulus of continuity for the inverse of Mañé’s...

A geometric derivation of the linear Boltzmann equation for a particle interacting with a Gaussian random field, using a Fock space approach

Sébastien Breteaux (2014)

Annales de l’institut Fourier

In this article the linear Boltzmann equation is derived for a particle interacting with a Gaussian random field, in the weak coupling limit, with renewal in time of the random field. The initial data can be chosen arbitrarily. The proof is geometric and involves coherent states and semi-classical calculus.

A necessary and sufficient condition for the existence of an exponential attractor

Dalibor Pražák (2003)

Open Mathematics

We give a necessary and sufficient condition for the existence of an exponential attractor. The condition is formulated in the context of metric spaces. It also captures the quantitative properties of the attractor, i.e., the dimension and the rate of attraction. As an application, we show that the evolution operator for the wave equation with nonlinear damping has an exponential attractor.

Almost sure global well-posedness for the radial nonlinear Schrödinger equation on the unit ball II: the 3d case

Jean Bourgain, Aynur Bulut (2014)

Journal of the European Mathematical Society

We extend the convergence method introduced in our works [8–10] for almost sure global well-posedness of Gibbs measure evolutions of the nonlinear Schrödinger (NLS) and nonlinear wave (NLW) equations on the unit ball in d to the case of the three dimensional NLS. This is the first probabilistic global well-posedness result for NLS with supercritical data on the unit ball in 3 . The initial data is taken as a Gaussian random process lying in the support of the Gibbs measure associated to the equation,...

Almost sure well-posedness for the periodic 3D quintic nonlinear Schrödinger equation below the energy space

Andrea R. Nahmod, Gigliola Staffilani (2015)

Journal of the European Mathematical Society

We also prove a long time existence result; more precisely we prove that for fixed T > 0 there exists a set Σ T , ( Σ T ) > 0 such that any data φ ω ( x ) H γ ( 𝕋 3 ) , γ < 1 , ω Σ T , evolves up to time T into a solution u ( t ) with u ( t ) - e i t Δ φ ω C ( [ 0 , T ] ; H s ( 𝕋 3 ) ) , s = s ( γ ) > 1 . In particular we find a nontrivial set of data which gives rise to long time solutions below the critical space H 1 ( 𝕋 3 ) , that is in the supercritical scaling regime.

An upper bound on the attractor dimension of a 2D turbulent shear flow with a free boundary condition

Mahdi Boukrouche, Grzegorz Łukaszewicz (2005)

Banach Center Publications

We consider a free boundary problem of a two-dimensional Navier-Stokes shear flow. There exist a unique global in time solution of the considered problem as well as the global attractor for the associated semigroup. As in [1] and [2], we estimate from above the dimension of the attractor in terms of given data and the geometry of the domain of the flow. This research is motivated by a free boundary problem from lubrication theory where the domain of the flow is usually very thin and the roughness...

Analytical derivation of time spectral rigidity for thermodynamic traffic gas

Milan Krbálek (2010)


We introduce an one-dimensional thermodynamical particle model which is efficient in predictions about a microscopical structure of animal/human groups. For such a model we present analytical calculations leading to formulae for time clearance distribution as well as for time spectral rigidity. Furthermore, the results obtained are reformulated in terms of vehicular traffic theory and consecutively compared to experimental traffic data.

Application of a center manifold theory to a reaction-diffusion system of collective motion of camphor disks and boats

Shin-Ichiro Ei, Kota Ikeda, Masaharu Nagayama, Akiyasu Tomoeda (2014)

Mathematica Bohemica

Unidirectional motion along an annular water channel can be observed in an experiment even with only one camphor disk or boat. Moreover, the collective motion of camphor disks or boats in the water channel exhibits a homogeneous and an inhomogeneous state, depending on the number of disks or boats, which looks like a kind of bifurcation phenomena. In a theoretical research, the unidirectional motion is represented by a traveling wave solution in a model. Hence it suffices to investigate a linearized...

Attracting divisors on projective algebraic varieties

Małgorzata Stawiska (2007)

Annales Polonici Mathematici

We obtain sufficient and necessary conditions (in terms of positive singular metrics on an associated line bundle) for a positive divisor D on a projective algebraic variety X to be attracting for a holomorphic map f:X → X.

Currently displaying 1 – 20 of 161

Page 1 Next