The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 2321 – 2340 of 4762

Showing per page

Marches en milieu aléatoire et mesures quasi-invariantes pour un système dynamique

Jean-Pierre Conze, Yves Guivarc'h (2000)

Colloquium Mathematicae

The invariant measures for a Markovian operator corresponding to a random walk, in a random stationary one-dimensional environment defined by a dynamical system, are quasi-invariant measures for the system. We discuss the construction of such measures in the general case and show unicity, under some assumptions, for a rotation on the circle.

Markov partitions for fibre expanding systems

Manfred Denker, Hajo Holzmann (2008)

Colloquium Mathematicae

Fibre expanding systems have been introduced by Denker and Gordin. Here we show the existence of a finite partition for such systems which is fibrewise a Markov partition. Such partitions have direct applications to the Abramov-Rokhlin formula for relative entropy and certain polynomial endomorphisms of ℂ².

Maslov indices on the metaplectic group M p ( n )

Maurice De Gosson (1990)

Annales de l'institut Fourier

We use the properties of M p ( n ) to construct functions μ : M p ( n ) Z 8 associated with the elements of the lagrangian grassmannian Λ (n) which generalize the Maslov index on Mp(n) defined by J. Leray in his “Lagrangian Analysis”. We deduce from these constructions the identity between M p ( n ) and a subset of S p ( n ) × Z 8 , equipped with appropriate algebraic and topological structures.

Masse des pointes, temps de retour et enroulements en courbure négative

Nathanaël Enriquez, Jacques Franchi (2002)

Bulletin de la Société Mathématique de France

Soient Γ un groupe discret géométriquement fini d’isométries d’une variété de Hadamard pincée X et 𝒫 une pointe de l’orbifold associé : = Γ X . Munissant T 1 de sa mesure de Patterson-Sullivan m , nous obtenons une estimation asymptotique de la masse d’un petit voisinage horocyclique de 𝒫 , moyennant une hypothèse sur la croissance du sous-groupe parabolique associé à 𝒫 , hypothèse qui est réalisée si X est symétrique de rang 1 . Nous en déduisons une estimation asymptotique du temps de retour du flot géodésique...

Matings and the other side of the dictionary

John Hubbard (2012)

Annales de la faculté des sciences de Toulouse Mathématiques

In the theory of rational maps an important role is played by matings. These are probably the best understood of all rational functions, but they are bizarre, and involve gluing dendrites together to get spheres carrying Peano curves. In the theory of Kleinian groups, there is a parallel construction, the construction of double limits, that is central to Thurston’s hyperbolization theorem for 3-manifolds that fiber over the circle with pseudo-Anosov monodromy. It also involves gluing dendrites and...

Matrix coefficients, counting and primes for orbits of geometrically finite groups

Amir Mohammadi, Hee Oh (2015)

Journal of the European Mathematical Society

Let G : = SO ( n , 1 ) and Γ ( n - 1 ) / 2 for n = 2 , 3 and when δ > n - 2 for n 4 , we obtain an effective archimedean counting result for a discrete orbit of Γ in a homogeneous space H G where H is the trivial group, a symmetric subgroup or a horospherical subgroup. More precisely, we show that for any effectively well-rounded family { T H G } of compact subsets, there exists η > 0 such that # [ e ] Γ T = ( T ) + O ( ( T ) 1 - η ) for an explicit measure on H G which depends on Γ . We also apply the affine sieve and describe the distribution of almost primes on orbits of Γ in arithmetic settings....

Currently displaying 2321 – 2340 of 4762