The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 2861 –
2880 of
4762
In this paper, a modified version of the Chaos Shift Keying (CSK) scheme for secure encryption and decryption of data will be discussed. The classical CSK method determines the correct value of binary signal through checking which initially unsynchronized system is getting synchronized. On the contrary, the new anti-synchronization CSK (ACSK) scheme determines the wrong value of binary signal through checking which already synchronized system is loosing synchronization. The ACSK scheme is implemented...
In applying control (or feedback) theory to (mechanic) Lagrangian systems, so far forces have been generally used as values of the control . However these values are those of a Lagrangian co-ordinate in various interesting problems with a scalar control , where this control is carried out physically by adding some frictionless constraints. This pushed the author to consider a typical Lagrangian system , referred to a system of Lagrangian co-ordinates, and to try and write some handy conditions,...
A solution of the Feigenbaum functional equation is called a Feigenbaum map. We investigate the likely limit set (i.e. the maximal attractor in the sense of Milnor) of a non-unimodal Feigenbaum map, prove that it is a minimal set that attracts almost all points, and then estimate its Hausdorff dimension. Finally, for every s ∈ (0,1), we construct a non-unimodal Feigenbaum map with a likely limit set whose Hausdorff dimension is s.
A proof of the C⁰-closing lemma for noninvertible discrete dynamical systems and its extension to the noncompact case are presented.
Under very mild assumptions, any Lipschitz continuous conjugacy between the closures of the postcritical sets of two C¹-unimodal maps has a derivative at the critical point, and also on a dense set of its preimages. In a more restrictive situation of infinitely renormalizable maps of bounded combinatorial type the Lipschitz condition automatically implies the C¹-smoothness of the conjugacy. Here the critical degree can be any real number α > 1.
Hydrogen atoms placed in external fields serve as a paradigm of a strongly coupled multidimensional Hamiltonian system. This system has been already very extensively studied, using experimental measurements and a wealth of theoretical methods. In this work, we apply the Morales-Ramis theory of non-integrability of Hamiltonian systems to the case of the hydrogen atom in perpendicular (crossed) static electric and magnetic uniform fields.
Let and be tent maps on the unit interval. In this paper we give a new proof of the fact that if the critical points of and are periodic and the inverse limit spaces and are homeomorphic, then s = t. This theorem was first proved by Kailhofer. The new proof in this paper simplifies the proof of Kailhofer. Using the techniques of the paper we are also able to identify certain isotopies between homeomorphisms on the inverse limit space.
We introduce the cohomological Conley type index theory for multivalued flows generated by vector fields which are compact and convex-valued perturbations of some linear operators.
Currently displaying 2861 –
2880 of
4762