On the Time Evolution of Statistical States for Anosov Systems.
A field of three-component unit vectors on the dimensional spacetime is considered. Two field configurations with different values of the topological charge cannot be connected by the path of field configurations with a finite Euclidean action. Therefore there is no transition between them. The initial and final configurations are assumed to be continuous at infinity. The asymptotic behaviour of intermediate configurations may be arbitrary. The proof is based on the properties of the degree of...
The aim of this paper is twofold. First we give a characterization of the set of kneading invariants for the class of Lorenz–like maps considered as a map of the circle of degree one with one discontinuity. In a second step we will consider the subclass of the Lorenz– like maps generated by the class of Lorenz maps in the interval. For this class of maps we give a characterization of the set of renormalizable maps with rotation interval degenerate to a rational number, that is, of phase–locking...
We extend the recent results from the class of continuous maps of the interval to the class of continuous maps of the circle. Among others, we give a characterization of -limit sets and give a characterization of sets of transitive points for these maps.
The uniqueness theorem for the ergodic maximal operator is proved in the continous case.
It is shown that if two functions share the same uncentered (two-sided) ergodic maximal function, then they are equal almost everywhere.
Unlike in the invertible setting, Anosov endomorphisms may have infinitely many unstable directions. Here we prove, under the transitivity assumption, that an Anosov endomorphism of a closed manifold M is either special (that is, every x ∈ M has only one unstable direction), or for a typical point in M there are infinitely many unstable directions. Another result is the semi-rigidity of the unstable Lyapunov exponent of a codimension one Anosov endomorphism that is C¹-close to a linear endomorphism...
A matrix in -algebra (fuzzy matrix) is called weakly robust if is an eigenvector of only if is an eigenvector of . The weak robustness of fuzzy matrices are studied and its properties are proved. A characterization of the weak robustness of fuzzy matrices is presented and an algorithm for checking the weak robustness is described.
We study the zero-temperature limit for Gibbs measures associated to Frenkel–Kontorova models on . We prove that equilibrium states concentrate on configurations of minimal energy, and, in addition, must satisfy a variational principle involving metric entropy and Lyapunov exponents, a bit like in the Ruelle–Pesin inequality. Then we transpose the result to certain continuous-time stationary stochastic processes associated to the viscous Hamilton–Jacobi equation. As the viscosity vanishes, the...
In the present paper we prove the “zero-two” law for positive contractions in the Banach-Kantorovich lattices , constructed by a measure with values in the ring of all measurable functions.