Displaying 381 – 400 of 490

Showing per page

On the ∗-product in kneading theory

Karen Brucks, R. Galeeva, P. Mumbrú, D. Rockmore, Charles Tresser (1997)

Fundamenta Mathematicae

We discuss a generalization of the *-product in kneading theory to maps with an arbitrary finite number of turning points. This is based on an investigation of the factorization of permutations into products of permutations with some special properties relevant for dynamics on the unit interval.

On the rate of convergence to the neutral attractor of a family of one-dimensional maps

T. Nowicki, M. Sviridenko, G. Świrszcz, S. Winograd (2009)

Fundamenta Mathematicae

For a family of maps f d ( p ) = 1 - ( 1 - p / d ) d , d ∈ [2,∞], p ∈ [0,1]. we analyze the speed of convergence (including constants) to the globally attracting neutral fixed point p = 0. The study is motivated by a problem in the optimization of routing. The aim of this paper is twofold: (1) to extend the usage of dynamical systems to unexplored areas of algorithms and (2) to provide a toolbox for a precise analysis of the iterates near a non-degenerate neutral fixed point.

On the relationship between hyperbolic and cone-hyperbolic structures in metric spaces

Marcin Mazur (2013)

Annales Polonici Mathematici

We give necessary and sufficient conditions for topological hyperbolicity of a homeomorphism of a metric space, restricted to a given compact invariant set. These conditions are related to the existence of an appropriate finite covering of this set and a corresponding cone-hyperbolic graph-directed iterated function system.

On the spectral theory and dynamics of asymptotically hyperbolic manifolds

Julie Rowlett (2010)

Annales de l’institut Fourier

We present a brief survey of the spectral theory and dynamics of infinite volume asymptotically hyperbolic manifolds. Beginning with their geometry and examples, we proceed to their spectral and scattering theories, dynamics, and the physical description of their quantum and classical mechanics. We conclude with a discussion of recent results, ideas, and conjectures.

On the spectrum of stochastic perturbations of the shift and Julia sets

el Houcein el Abdalaoui, Ali Messaoudi (2012)

Fundamenta Mathematicae

We extend the Killeen-Taylor study [Nonlinearity 13 (2000)] by investigating in different Banach spaces ( α ( ) ,c₀(ℕ),c(ℕ)) the point, continuous and residual spectra of stochastic perturbations of the shift operator associated to the stochastic adding machine in base 2 and in the Fibonacci base. For the base 2, the spectra are connected to the Julia set of a quadratic map. In the Fibonacci case, the spectrum is related to the Julia set of an endomorphism of ℂ².

Currently displaying 381 – 400 of 490