The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 441 –
460 of
491
We study the local behaviour of inflection points of families of plane curves in the
projective plane. We develop normal forms and versal deformation concepts for holomorphic
function germs which take into account
the inflection points of the fibres of . We give a classification of such function-
germs which is a projective analog of Arnold’s A,D,E classification. We compute the
versal deformation with respect to inflections of Morse function-germs.
For each vector v we define the notion of a v-positive type for infinite-measure-preserving transformations, a refinement of positive type as introduced by Hajian and Kakutani. We prove that a positive type transformation need not be (1,2)-positive type. We study this notion in the context of Markov shifts and multiple recurrence, and give several examples.
We study weak mixing and double ergodicity for nonsingular actions of locally compact Polish abelian groups. We show that if T is a nonsingular action of G, then T is weakly mixing if and only if for all cocompact subgroups A of G the action of T restricted to A is weakly mixing. We show that a doubly ergodic nonsingular action is weakly mixing and construct an infinite measure-preserving flow that is weakly mixing but not doubly ergodic. We also construct an infinite measure-preserving flow whose...
We introduce the notion of W-measurable sensitivity, which extends and strictly implies canonical measurable sensitivity, a measure-theoretic version of sensitive dependence on initial conditions. This notion also implies pairwise sensitivity with respect to a large class of metrics. We show that nonsingular ergodic and conservative dynamical systems on standard spaces must be either W-measurably sensitive, or isomorphic mod 0 to a minimal uniformly rigid isometry. In the finite measure-preserving...
This paper presents two algorithms for one-parameter local
bifurcations of equilibrium points of dynamical systems.
The algorithms are implemented in the computer algebra system Maple 13 © and designed as a package. Some examples are reported to demonstrate the package’s facilities.* This paper is partially supported by the Bulgarian Science Fund under grant Nr. DO 02–359/2008.
We give a clear and systematic exposition of one-parameter families of brake orbits in dynamical systems on product vector bundles (where the fiber has the same dimension as the base manifold). A generalized definition of a brake orbit is given, and the relationship between brake orbits and periodic orbits is discussed. The brake equation, which implicitly encodes information about the brake orbits of a dynamical system, is defined. Using the brake equation, a one-parameter family of brake orbits...
We show the existence of a one-parameter family of cubic Kolmogorov system with an isochronous center in the realistic quadrant.
Previous studies on on-off intermittency in continuum systems are generally based on the synchronization of identical chaotic oscillators or in nonlinear systems driven by the Duffing oscillator. In this paper, one-state on-off intermittency and two-state on-off intermittency are observed in two five- dimensional continuum systems, respectively, where each system has a two- dimensional subsystem driven by the chaotic Chen system. The phenomenon of intermingled basins is observed below the blowout...
We consider Schrödinger operators with dynamically defined potentials arising from continuous sampling along orbits of strictly ergodic transformations. The Gap Labeling Theorem states that the possible gaps in the spectrum can be canonically labelled by an at most countable set defined purely in terms of the dynamics. Which labels actually appear depends on the choice of the sampling function; the missing labels are said to correspond to collapsed gaps. Here we show that for any collapsed gap,...
Currently displaying 441 –
460 of
491