The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Let be a hereditary property of words, i.e., an infinite class of finite words such that every subword (block) of a word belonging to is also in . Extending the classical Morse-Hedlund theorem, we show that either contains at least words of length for every or, for some , it contains at most words of length for every . More importantly, we prove the following quantitative extension of this result: if has words of length then, for every , it contains at most words of length...
Let P be a hereditary property of words, i.e., an
infinite class of finite words such that every subword (block) of
a word belonging to P is also in P.
Extending the classical Morse-Hedlund theorem, we show that
either P contains at least n+1 words of length
n for every n or, for some N, it contains at most N words of length
n for every n. More importantly, we prove the following quantitative
extension of this result: if P
has m ≤ n words of length n then, for every k ≥ n + m, it contains
at most...
The Knaster continuum is defined as the inverse limit of the pth degree tent map. On every composant of the Knaster continuum we introduce an order and we consider some special points of the composant. These are used to describe the structure of the composants. We then prove that, for any integer p ≥ 2, all composants of having no endpoints are homeomorphic. This generalizes Bandt’s result which concerns the case p = 2.
Currently displaying 1 –
4 of
4