The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Let K be the Cantor set. We prove that arbitrarily close to a homeomorphism T: K → K there exists a homeomorphism T̃: K → K such that the ω-limit of every orbit is a periodic orbit. We also prove that arbitrarily close to an endomorphism T: K → K there exists an endomorphism T̃: K → K with every orbit finally periodic.
We define thin equivalence relations ∼ on shift spaces and derive Dirichlet forms on the quotient space in terms of the nearest neighbour averaging operator. We identify the associated Laplace operator. The conditions are applied to some non-self-similar extensions of the Sierpiński gasket.
This survey aims at giving a consistent presentation of numeration from a dynamical viewpoint: we focus on numeration systems, their associated compactification, and dynamical systems that can be naturally defined on them. The exposition is unified by the fibred numeration system concept. Many examples are discussed. Various numerations on rational integers, real or complex numbers are presented with special attention paid to -numeration and its generalisations, abstract numeration systems and...
We study the dynamics near infinity of polynomial mappings f in C2. We assume that f has indeterminacy points and is non constant on the line at infinity L∞. If L∞ is f-attracting, we decompose the Green current along itineraries defined by the indeterminacy points and their preimages. The symbolic dynamics that arises is a subshift on an infinite alphabet.
Currently displaying 1 –
7 of
7