The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1

Displaying 1 – 4 of 4

Showing per page

Nombres de Pisots, matrices primitives et bêta-conjugués

Anne Bertrand-Mathis (2012)

Journal de Théorie des Nombres de Bordeaux

Soit β un nombre de Pisot ; nous montrons que pour tout entier n assez grand il existe une matrice carrée à coefficients positifs ou nuls dont l’ordre est égal au degré de β et dont β n est valeur propre.Soit β = a 1 / β + a 2 / β 2 + + a n / β n + le β -développement de β  ; si β est un nombre de Pisot, alors la suite ( a n ) n 1 est périodique après un certain rang n 0 (pour n n 0 , a n + k = a n ) et le polynôme X n 0 + k - ( a 1 X n 0 + k - 1 + + a n 0 + k ) - ( X n 0 - ( a 1 X n 0 + + a n 0 ) ) est appelé polynôme de Parry. Nous montrons qu’il existe un ensemble relativement dense d’entiers n tels que le polynôme minimal de β n est égal à son polynôme...

Non-transitive points and porosity

T. K. Subrahmonian Moothathu (2013)

Colloquium Mathematicae

We establish that for a fairly general class of topologically transitive dynamical systems, the set of non-transitive points is very small when the rate of transitivity is very high. The notion of smallness that we consider here is that of σ-porosity, and in particular we show that the set of non-transitive points is σ-porous for any subshift that is a factor of a transitive subshift of finite type, and for the tent map of [0,1]. The result extends to some finite-to-one factor systems. We also show...

Currently displaying 1 – 4 of 4

Page 1