The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 21 –
40 of
202
Analytic solutions of polynomial-like iterative functional equations with variable coefficients are discussed in the complex field ℂ by reducing to an auxiliary equation and by applying known results for systems of nonlinear functional equations of finite orders.
Our goal is to study Pascal-Sierpinski gaskets, which are certain fractal sets defined in terms of divisibility of entries in Pascal's triangle. The principal tool is a carry rule for the addition of the base-q representation of coordinates of points in the unit square. In the case that q = p is prime, we connect the carry rule to the power of p appearing in the prime factorization of binomial coefficients. We use the carry rule to define a family of fractal subsets Bqr of the unit square, and we...
The system of Abel equations
α(ft(x)) = α(x) + λ(t), t ∈ T,
is studied under the general assumption that are pairwise commuting homeomorphisms of a real interval and have no fixed points (T is an arbitrary non-empty set). A result concerning embeddability of rational iteration groups in continuous groups is proved as a simple consequence of the obtained theorems.
We consider a rational function which is ‘lacunary’ in the sense that it can be expressed as the ratio of two polynomials (not necessarily coprime) having each at most a given number of terms. Then we look at the possible decompositions , where are rational functions of degree larger than 1. We prove that, apart from certain exceptional cases which we completely describe, the degree of is bounded only in terms of (and we provide explicit bounds). This supports and quantifies the intuitive...
Let F t: t ≥ 0 be a concave iteration semigroup of linear continuous set-valued functions defined on a convex cone K with nonempty interior in a Banach space X with values in cc(K). If we assume that the Hukuhara differences F 0(x) − F t (x) exist for x ∈ K and t > 0, then D t F t (x) = (−1)F t ((−1)G(x)) for x ∈ K and t ≥ 0, where D t F t (x) denotes the derivative of F t (x) with respect to t and
for x ∈ K.
We consider a concave iteration semigroup of linear continuous set-valued functions defined on a closed convex cone in a separable Banach space. We prove that such an iteration semigroup has a selection which is also an iteration semigroup of linear continuous functions. Moreover it is majorized by an "exponential" family of linear continuous set-valued functions.
Using the fixed point theorems of Banach and Schauder we discuss the existence, uniqueness and stability of continuous solutions of a polynomial-like iterative equation with variable coefficients.
Given a probability space (Ω,, P) and a closed subset X of a Banach lattice, we consider functions f: X × Ω → X and their iterates defined by f¹(x,ω) = f(x,ω₁), , and obtain theorems on the convergence (a.s. and in L¹) of the sequence (fⁿ(x,·)).
For a continuous map f from a real compact interval I into itself, we consider the set C(f) of points (x,y) ∈ I² for which and . We prove that if C(f) has full Lebesgue measure then it is residual, but the converse may not hold. Also, if λ² denotes the Lebesgue measure on the square and Ch(f) is the set of points (x,y) ∈ C(f) for which neither x nor y are asymptotically periodic, we show that λ²(C(f)) > 0 need not imply λ²(Ch(f)) > 0. We use these results to propose some plausible definitions...
Currently displaying 21 –
40 of
202