The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 2281 – 2300 of 3651

Showing per page

Pointwise convergence to the initial data for nonlocal dyadic diffusions

Marcelo Actis, Hugo Aimar (2016)

Czechoslovak Mathematical Journal

We solve the initial value problem for the diffusion induced by dyadic fractional derivative s in + . First we obtain the spectral analysis of the dyadic fractional derivative operator in terms of the Haar system, which unveils a structure for the underlying “heat kernel”. We show that this kernel admits an integrable and decreasing majorant that involves the dyadic distance. This allows us to provide an estimate of the maximal operator of the diffusion by the Hardy-Littlewood dyadic maximal operator....

Pointwise Fourier inversion of distributions on spheres

Francisco Javier González Vieli (2017)

Czechoslovak Mathematical Journal

Given a distribution T on the sphere we define, in analogy to the work of Łojasiewicz, the value of T at a point ξ of the sphere and we show that if T has the value τ at ξ , then the Fourier-Laplace series of T at ξ is Abel-summable to τ .

Pointwise multipliers for reverse Holder spaces

Stephen Buckley (1994)

Studia Mathematica

We classify weights which map reverse Hölder weight spaces to other reverse Hölder weight spaces under pointwise multiplication. We also give some fairly general examples of weights satisfying weak reverse Hölder conditions.

Pointwise multipliers on martingale Campanato spaces

Eiichi Nakai, Gaku Sadasue (2014)

Studia Mathematica

We introduce generalized Campanato spaces p , ϕ on a probability space (Ω,ℱ,P), where p ∈ [1,∞) and ϕ: (0,1] → (0,∞). If p = 1 and ϕ ≡ 1, then p , ϕ = B M O . We give a characterization of the set of all pointwise multipliers on p , ϕ .

Pointwise multipliers on weighted BMO spaces

Eiichi Nakai (1997)

Studia Mathematica

Let E and F be spaces of real- or complex-valued functions defined on a set X. A real- or complex-valued function g defined on X is called a pointwise multiplier from E to F if the pointwise product fg belongs to F for each f ∈ E. We denote by PWM(E,F) the set of all pointwise multipliers from E to F. Let X be a space of homogeneous type in the sense of Coifman-Weiss. For 1 ≤ p < ∞ and for ϕ : X × + + , we denote by b m o ϕ , p ( X ) the set of all functions f L l o c p ( X ) such that s u p a X , r > 0 1 / ϕ ( a , r ) ( 1 / μ ( B ( a , r ) ) ʃ B ( a , r ) | f ( x ) - f B ( a , r ) | p d μ ) 1 / p < , where B(a,r) is the ball centered at a and of...

Pointwise smoothness, two-microlocalization and wavelet coefficients.

Stéphane Jaffard (1991)

Publicacions Matemàtiques

In this paper we shall compare three notions of pointwise smoothness: the usual definition, J.M. Bony's two-microlocal spaces Cx0s,s', and the corresponding definition on the wavelet coefficients. The purpose is mainly to show that these two-microlocal spaces provide "good substitutes" for the pointwise Hölder regularity condition; they can be very precisely compared with this condition, they have more functional properties, and can be characterized by conditions on the wavelet coefficients. We...

Pointwise strong approximation of almost periodic functions

Radosława Kranz, Włodzimierz Łenski, Bogdan Szal (2016)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

We consider the class GM(₂β) in pointwise estimate of the deviations in strong mean of almost periodic functions from matrix means of partial sums of their Fourier series.

Polyhedral summability of multiple Fourier series (and explicit formulas for Dirichlet kernels on n and on compact Lie groups)

Giancarlo Travaglini (1993)

Colloquium Mathematicae

We study polyhedral Dirichlet kernels on the n-dimensional torus and we write a fairly simple formula which extends the one-dimensional identity j = - N N e i j t = s i n ( ( N + ( 1 / 2 ) ) t ) / s i n ( ( 1 / 2 ) t ) . We prove sharp results for the Lebesgue constants and for the pointwise boundedness of polyhedral Dirichlet kernels; we apply our results and methods to approximation theory, to more general summability methods and to Fourier series on compact Lie groups, where we write an asymptotic formula for the Dirichlet kernels.

Currently displaying 2281 – 2300 of 3651