Displaying 1381 – 1400 of 3638

Showing per page

L p - L q estimates for some convolution operators with singular measures on the Heisenberg group

T. Godoy, P. Rocha (2013)

Colloquium Mathematicae

We consider the Heisenberg group ℍⁿ = ℂⁿ × ℝ. Let ν be the Borel measure on ℍⁿ defined by ν ( E ) = χ E ( w , φ ( w ) ) η ( w ) d w , where φ ( w ) = j = 1 n a j | w j | ² , w = (w₁,...,wₙ) ∈ ℂⁿ, a j , and η(w) = η₀(|w|²) with η C c ( ) . We characterize the set of pairs (p,q) such that the convolution operator with ν is L p ( ) - L q ( ) bounded. We also obtain L p -improving properties of measures supported on the graph of the function φ ( w ) = | w | 2 m .

L p ( ) boundedness for the commutator of a homogeneous singular integral operator

Guoen Hu (2003)

Studia Mathematica

The commutator of a singular integral operator with homogeneous kernel Ω(x)/|x|ⁿ is studied, where Ω is homogeneous of degree zero and has mean value zero on the unit sphere. It is proved that Ω L ( l o g L ) k + 1 ( S n - 1 ) is a sufficient condition for the kth order commutator to be bounded on L p ( ) for all 1 < p < ∞. The corresponding maximal operator is also considered.

L p ( ) bounds for commutators of convolution operators

Guoen Hu, Qiyu Sun, Xin Wang (2002)

Colloquium Mathematicae

The L p ( ) boundedness is established for commutators generated by BMO(ℝⁿ) functions and convolution operators whose kernels satisfy certain Fourier transform estimates. As an application, a new result about the L p ( ) boundedness is obtained for commutators of homogeneous singular integral operators whose kernels satisfy the Grafakos-Stefanov condition.

L p spectral multipliers on the free group N 3 , 2

Alessio Martini, Detlef Müller (2013)

Studia Mathematica

Let L be a homogeneous sublaplacian on the 6-dimensional free 2-step nilpotent Lie group N 3 , 2 on three generators. We prove a theorem of Mikhlin-Hörmander type for the functional calculus of L, where the order of differentiability s > 6/2 is required on the multiplier.

L p type mapping estimates for oscillatory integrals in higher dimensions

G. Sampson (2006)

Studia Mathematica

We show in two dimensions that if K f = ² k ( x , y ) f ( y ) d y , k ( x , y ) = ( e i x a · y b ) / ( | x - y | η ) , p = 4/(2+η), a ≥ b ≥ 1̅ = (1,1), v p ( y ) = y ( p / p ' ) ( 1 ̅ - b / a ) , then | | K f | | p C | | f | | p , v p if η + α₁ + α₂ < 2, α j = 1 - b j / a j , j = 1,2. Our methods apply in all dimensions and also for more general kernels.

L p weighted inequalities for the dyadic square function

Akihito Uchiyama (1995)

Studia Mathematica

We prove that ʃ ( S d f ) p V d x C p , n ʃ | f | p M d ( [ p / 2 ] + 2 ) V d x , where S d is the dyadic square function, M d ( k ) is the k-fold application of the dyadic Hardy-Littlewood maximal function and p > 2.

L2 boundedness of a singular integral operator.

Dashan Fan, Yibiao Pan (1997)

Publicacions Matemàtiques

In this paper we study a singular integral operator T with rough kernel. This operator has singularity along sets of the form {x = Q(|y|)y'}, where Q(t) is a polynomial satisfying Q(0) = 0. We prove that T is a bounded operator in the space L2(Rn), n ≥ 2, and this bound is independent of the coefficients of Q(t).We also obtain certain Hardy type inequalities related to this operator.

La version ondelettes du théorème du Jacobien.

Sylvia Dobyinsky (1995)

Revista Matemática Iberoamericana

Nous définissons un produit renormalisé par ondelettes qui améliore, dans certains cadres fonctionnels, les propriétés du produit usuel de deux fonctions. Grâce à cette technique de renormalisation du produit nous obtenons une démonstration par ondelettes d'une version précisée du théorème du Jacobien. Finalement nous établissons le lien entre ce produit renormalisé par ondelettes et les paraproduits de J.M. Bony.

Lacunary Fractional brownian Motion

Marianne Clausel (2012)

ESAIM: Probability and Statistics

In this paper, a new class of Gaussian field is introduced called Lacunary Fractional Brownian Motion. Surprisingly we show that usually their tangent fields are not unique at every point. We also investigate the smoothness of the sample paths of Lacunary Fractional Brownian Motion using wavelet analysis.

Currently displaying 1381 – 1400 of 3638