Displaying 1601 – 1620 of 3638

Showing per page

Multipliers for Hermite expansions.

Sundaram Thangavelu (1987)

Revista Matemática Iberoamericana

The aim of this paper is to prove certain multiplier theorems for the Hermite series.

Multipliers of Hardy spaces, quadratic integrals and Foiaş-Williams-Peller operators

G. Blower (1998)

Studia Mathematica

We obtain a sufficient condition on a B(H)-valued function φ for the operator Γ φ ' ( S ) to be completely bounded on H B ( H ) ; the Foiaş-Williams-Peller operator | St Γφ | Rφ = | | | 0 S | is then similar to a contraction. We show that if ⨍ : D → B(H) is a bounded analytic function for which ( 1 - r ) | | ' ( r e i θ ) | | B ( H ) 2 r d r d θ and ( 1 - r ) | | " ( r e i θ ) | | B ( H ) r d r d θ are Carleson measures, then ⨍ multiplies ( H 1 c 1 ) ' to itself. Such ⨍ form an algebra A, and when φ’∈ BMO(B(H)), the map Γ φ ' ( S ) is bounded A B ( H 2 ( H ) , L 2 ( H ) H 2 ( H ) ) . Thus we construct a functional calculus for operators of Foiaş-Williams-Peller type.

Multipliers of Laplace transform type for Laguerre and Hermite expansions

Pablo L. De Nápoli, Irene Drelichman, Ricardo G. Durán (2011)

Studia Mathematica

We present a new criterion for the weighted L p - L q boundedness of multiplier operators for Laguerre and Hermite expansions that arise from a Laplace-Stieltjes transform. As a special case, we recover known results on weighted estimates for Laguerre and Hermite fractional integrals with a unified and simpler approach.

Multipliers of the Hardy space H¹ and power bounded operators

Gilles Pisier (2001)

Colloquium Mathematicae

We study the space of functions φ: ℕ → ℂ such that there is a Hilbert space H, a power bounded operator T in B(H) and vectors ξ, η in H such that φ(n) = ⟨Tⁿξ,η⟩. This implies that the matrix ( φ ( i + j ) ) i , j 0 is a Schur multiplier of B(ℓ₂) or equivalently is in the space (ℓ₁ ⊗̌ ℓ₁)*. We show that the converse does not hold, which answers a question raised by Peller [Pe]. Our approach makes use of a new class of Fourier multipliers of H¹ which we call “shift-bounded”. We show that there is a φ which is a “completely...

Multipliers on a Hilbert Space of Functions on R

Petkova, Violeta (2009)

Serdica Mathematical Journal

2000 Mathematics Subject Classification: 42A45.For a Hilbert space H ⊂ L1loc(R) of functions on R we obtain a representation theorem for the multipliers M commuting with the shift operator S. This generalizes the classical result for multipliers in L2(R) as well as our previous result for multipliers in weighted space L2ω(R). Moreover, we obtain a description of the spectrum of S.

Multivariate smooth interpolation that employs polyharmonic functions

Segeth, Karel (2019)

Programs and Algorithms of Numerical Mathematics

We study the problem of construction of the smooth interpolation formula presented as the minimizer of suitable functionals subject to interpolation constraints. We present a procedure for determining the interpolation formula that in a natural way leads to a linear combination of polyharmonic splines complemented with lower order polynomial terms. In general, such formulae can be very useful e.g. in geographic information systems or computer aided geometric design. A simple computational example...

Multivariate spectral multipliers for systems of Ornstein-Uhlenbeck operators

Błażej Wróbel (2013)

Studia Mathematica

Multivariate spectral multipliers for systems of Ornstein-Uhlenbeck operators are studied. We prove that L p -uniform, 1 < p < ∞, spectral multipliers extend to holomorphic functions in some subset of a polysector, depending on p. We also characterize L¹-uniform spectral multipliers and prove a Marcinkiewicz-type multiplier theorem. In the appendix we obtain analogous results for systems of Laguerre operators.

Musielak-Orlicz-Hardy Spaces Associated with Operators Satisfying Reinforced Off-Diagonal Estimates

The Anh Bui, Jun Cao, Luong Dang Ky, Dachun Yang, Sibei Yang (2013)

Analysis and Geometry in Metric Spaces

Let X be a metric space with doubling measure and L a one-to-one operator of type ω having a bounded H∞ -functional calculus in L2(X) satisfying the reinforced (pL; qL) off-diagonal estimates on balls, where pL ∊ [1; 2) and qL ∊ (2;∞]. Let φ : X × [0;∞) → [0;∞) be a function such that φ (x;·) is an Orlicz function, φ(·;t) ∊ A∞(X) (the class of uniformly Muckenhoupt weights), its uniformly critical upper type index l(φ) ∊ (0;1] and φ(·; t) satisfies the uniformly reverse Hölder inequality of order...

Necessary and sufficient conditions for boundedness of the maximal operator in local Morrey-type spaces

Viktor I. Burenkov, Huseyn V. Guliyev (2004)

Studia Mathematica

The problem of boundedness of the Hardy-Littewood maximal operator in local and global Morrey-type spaces is reduced to the problem of boundedness of the Hardy operator in weighted L p -spaces on the cone of non-negative non-increasing functions. This allows obtaining sufficient conditions for boundedness for all admissible values of the parameters. Moreover, in case of local Morrey-type spaces, for some values of the parameters, these sufficient conditions are also necessary.

Currently displaying 1601 – 1620 of 3638