The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We prove two-weight norm inequalities in ℝⁿ for the minimal operator
,
extending to higher dimensions results obtained by Cruz-Uribe, Neugebauer and Olesen [8] on the real line. As an application we extend to ℝⁿ weighted norm inequalities for the geometric maximal operator
,
proved by Yin and Muckenhoupt [27].
We also give norm inequalities for the centered minimal operator, study powers of doubling weights and give sufficient conditions for the geometric maximal operator to be equal to the closely...
We introduce the minimal operator on weighted grand Lebesgue spaces, discuss some weighted norm inequalities and characterize the conditions under which the inequalities hold. We also prove that the John-Nirenberg inequalities in the framework of weighted grand Lebesgue spaces are valid provided that the weight function belongs to the Muckenhoupt class.
It is shown that the Muckenhoupt structure constants for f and f* on the real line are the same.
We introduce the one-sided minimal operator, , which is analogous to the one-sided maximal operator. We determine the weight classes which govern its two-weight, strong and weak-type norm inequalities, and show that these two classes are the same. Then in the one-weight case we use this class to introduce a new one-sided reverse Hölder inequality which has several applications to one-sided weights.
Kato’s conjecture, stating that the domain of the square root of any accretive operator with bounded measurable coefficients in is the Sobolev space , i.e. the domain of the underlying sesquilinear form, has recently been obtained by Auscher, Hofmann, Lacey, McIntosh and the author. These notes present the result and explain the strategy of proof.
Figà-Talamanca characterized the space of Fourier multipliers as the dual space of a certain Banach space. In this paper, we characterize the space of maximal Fourier multipliers as a dual space.
2000 Math. Subject Classification: Primary 42B20, 42B25, 42B35In this paper we study the Riesz potentials (B -Riesz potentials) generated by the Laplace-Bessel differential operator ∆B.* Akif Gadjiev’s research is partially supported by the grant of INTAS (project 06-1000017-8792) and Vagif Guliyev’s research is partially supported by the grant of the Azerbaijan–U.S. Bilateral Grants Program II (project ANSF Award / 16071) and by the
grant of INTAS (project 05-1000008-8157).
Let φ:ℝ ² → ℝ be a homogeneous polynomial function of degree m ≥ 2, let μ be the Borel measure on ℝ ³ defined by with D = x ∈ ℝ ²:|x| ≤ 1 and let be the convolution operator with the measure μ. Let be the decomposition of φ into irreducible factors. We show that if for each of degree 1, then the type set can be explicitly described as a closed polygonal region.
rning the boundedness for fractional maximal and potential operators defined on quasi-metric measure spaces from to (trace inequality), where 1 < p < q < ∞, θ > 0 and μ satisfies the doubling condition in X. The results are new even for Euclidean spaces. For example, from our general results D. Adams-type necessary and sufficient conditions guaranteeing the trace inequality for fractional maximal functions and potentials defined on so-called s-sets in ℝⁿ follow. Trace inequalities...
The aim of this paper is to establish transference and restriction theorems for maximal operators defined by multipliers on the Hardy spaces and , 0 < p ≤ 1, which generalize the results of Kenig-Tomas for the case p > 1. We prove that under a mild regulation condition, an function m is a maximal multiplier on if and only if it is a maximal multiplier on . As an application, the restriction of maximal multipliers to lower dimensional Hardy spaces is considered.
Let be a non-periodic collection of commuting measure preserving transformations on a probability space (Ω,Σ,μ). Also let Γ be a nonempty subset of and the associated collection of rectangular parallelepipeds in with sides parallel to the axes and dimensions of the form with The associated multiparameter geometric and ergodic maximal operators and are defined respectively on and L¹(Ω) by
and
.
Given a Young function Φ, it is shown that satisfies the weak type estimate
for...
Currently displaying 21 –
40 of
68