An semigroup of zero measure which contains a translate of every countable set
Let be a locally compact group, for let denote the closure of in the convolution operators on . Denote the dual of which is contained in the space of pointwise multipliers of the Figa-Talamanca Herz space . It is shown that on the unit sphere of the topology and the strong -multiplier topology coincide.
2000 Mathematics Subject Classification: 42B10, 43A32.In this paper we take the strip KL = [0, +∞[×[−Lπ, Lπ], where L is a positive integer. We consider, for a nonnegative real number α, two partial differential operators D and Dα on ]0, +∞[×] − Lπ, Lπ[. We associate a generalized Fourier transform Fα to the operators D and Dα. For this transform Fα, we establish an Lp − Lq − version of the Morgan's theorem under the assumption 1 ≤ p, q ≤ +∞.
Let be any group containing an infinite elementary amenable subgroup and let . We construct an exhaustion of by closed invariant subspaces which all intersect trivially a fixed non-trivial closed invariant subspace. This is an obstacle to -dimension and gives an answer to a question of Gaboriau.