Displaying 221 – 240 of 600

Showing per page

Equivalent quasi-norms and atomic decomposition of weak Triebel-Lizorkin spaces

Wenchang Li, Jingshi Xu (2017)

Czechoslovak Mathematical Journal

Recently, the weak Triebel-Lizorkin space was introduced by Grafakos and He, which includes the standard Triebel-Lizorkin space as a subset. The latter has a wide applications in aspects of analysis. In this paper, the authors firstly give equivalent quasi-norms of weak Triebel-Lizorkin spaces in terms of Peetre's maximal functions. As an application of those equivalent quasi-norms, an atomic decomposition of weak Triebel-Lizorkin spaces is given.

Equivanishing sequences of mappings

Piotr Antosik (2000)

Banach Center Publications

Utilizing elementary properties of convergence of numerical sequences we prove Nikodym, Banach, Orlicz-Pettis type theorems

Equivariant measurable liftings

Nicolas Monod (2015)

Fundamenta Mathematicae

We discuss equivariance for linear liftings of measurable functions. Existence is established when a transformation group acts amenably, as e.g. the Möbius group of the projective line. Since the general proof is very simple but not explicit, we also provide a much more explicit lifting for semisimple Lie groups acting on their Furstenberg boundary, using unrestricted Fatou convergence. This setting is relevant to L -cocycles for characteristic classes.

Equivariant Morita equivalences between Podleś spheres

Kenny De Commer (2012)

Banach Center Publications

We show that the family of Podleś spheres is complete under equivariant Morita equivalence (with respect to the action of quantum SU(2)), and determine the associated orbits. We also give explicit formulas for the actions which are equivariantly Morita equivalent with the quantum projective plane. In both cases, the computations are made by examining the localized spectral decomposition of a generalized Casimir element.

Equivariant spectral triples

Andrzej Sitarz (2003)

Banach Center Publications

We present the review of noncommutative symmetries applied to Connes' formulation of spectral triples. We introduce the notion of equivariant spectral triples with Hopf algebras as isometries of noncommutative manifolds, relate it to other elements of theory (equivariant K-theory, homology, equivariant differential algebras) and provide several examples of spectral triples with their isometries: isospectral (twisted) deformations (including noncommutative torus) and finite spectral triples.

Ergodic Dilation of a Quantum Dynamical System

Carlo Pandiscia (2014)

Confluentes Mathematici

Using the Nagy dilation of linear contractions on Hilbert space and the Stinespring’s theorem for completely positive maps, we prove that any quantum dynamical system admits a dilation in the sense of Muhly and Solel which satisfies the same ergodic properties of the original quantum dynamical system.

Currently displaying 221 – 240 of 600