Displaying 201 – 220 of 600

Showing per page

Equivalence Between K-functionals Based on Continuous Linear Transforms

Draganov, Borislav, Ivanov, Kamen (2007)

Serdica Mathematical Journal

2000 Mathematics Subject Classification: 46B70, 41A10, 41A25, 41A27, 41A35, 41A36, 42A10.The paper presents a method of relating two K-functionals by means of a continuous linear transform of the function. In particular, a characterization of various weighted K-functionals by unweighted fixed-step moduli of smoothness is derived. This is applied in estimating the rate of convergence of several approximation processes.Partially supported by grant No. 103/2007 of the National Science Fund of the Sofia University....

Equivalence bimodule between non-commutative tori

Sei-Qwon Oh, Chun-Gil Park (2003)

Czechoslovak Mathematical Journal

The non-commutative torus C * ( n , ω ) is realized as the C * -algebra of sections of a locally trivial C * -algebra bundle over S ω ^ with fibres isomorphic to C * ( n / S ω , ω 1 ) for a totally skew multiplier ω 1 on n / S ω . D. Poguntke [9] proved that A ω is stably isomorphic to C ( S ω ^ ) C * ( n / S ω , ω 1 ) C ( S ω ^ ) A ϕ M k l ( ) for a simple non-commutative torus A ϕ and an integer k l . It is well-known that a stable isomorphism of two separable C * -algebras is equivalent to the existence of equivalence bimodule between them. We construct an A ω - C ( S ω ^ ) A ϕ -equivalence bimodule.

Equivalence bundles over a finite group and strong Morita equivalence for unital inclusions of unital C * -algebras

Kazunori Kodaka (2022)

Mathematica Bohemica

Let 𝒜 = { A t } t G and = { B t } t G be C * -algebraic bundles over a finite group G . Let C = t G A t and D = t G B t . Also, let A = A e and B = B e , where e is the unit element in G . We suppose that C and D are unital and A and B have the unit elements in C and D , respectively. In this paper, we show that if there is an equivalence 𝒜 - -bundle over G with some properties, then the unital inclusions of unital C * -algebras A C and B D induced by 𝒜 and are strongly Morita equivalent. Also, we suppose that 𝒜 and are saturated and that A ' C = 𝐂 1 . We show that if A C and B D ...

Equivalence of norms in one-sided Hp spaces.

Liliana de Rosa, Carlos Segovia (2002)

Collectanea Mathematica

One-sided versions of maximal functions for suitable defined distributions are considered. Weighted norm equivalences of these maximal functions for weights in the Sawyer's Aq+ classes are obtained.

Equivalences involving (p,q)-multi-norms

Oscar Blasco, H. G. Dales, Hung Le Pham (2014)

Studia Mathematica

We consider (p,q)-multi-norms and standard t-multi-norms based on Banach spaces of the form L r ( Ω ) , and resolve some question about the mutual equivalence of two such multi-norms. We introduce a new multi-norm, called the [p,q]-concave multi-norm, and relate it to the standard t-multi-norm.

Equivalent conditions for the validity of the Helmholtz decomposition of Muckenhoupt A p -weighted L p -spaces

Ryôhei Kakizawa (2018)

Czechoslovak Mathematical Journal

We discuss the validity of the Helmholtz decomposition of the Muckenhoupt A p -weighted L p -space ( L w p ( Ω ) ) n for any domain Ω in n , n , n 2 , 1 < p < and Muckenhoupt A p -weight w A p . Set p ' : = p / ( p - 1 ) and w ' : = w - 1 / ( p - 1 ) . Then the Helmholtz decomposition of ( L w p ( Ω ) ) n and ( L w ' p ' ( Ω ) ) n and the variational estimate of L w , π p ( Ω ) and L w ' , π p ' ( Ω ) are equivalent. Furthermore, we can replace L w , π p ( Ω ) and L w ' , π p ' ( Ω ) by L w , σ p ( Ω ) and L w ' , σ p ' ( Ω ) , respectively. The proof is based on the reflexivity and orthogonality of L w , π p ( Ω ) and L w , σ p ( Ω ) and the Hahn-Banach theorem. As a corollary of our main result, we obtain the extrapolation theorem with...

Equivalent norms in some spaces of analytic functions and the uncertainty principle

Boris Paneah (1996)

Banach Center Publications

The main object of this work is to describe such weight functions w(t) that for all elements f L p , Ω the estimate w f p K ( Ω ) f p is valid with a constant K(Ω), which does not depend on f and it grows to infinity when the domain Ω shrinks, i.e. deforms into a lower dimensional convex set Ω . In one-dimensional case means that K ( σ ) : = K ( Ω σ ) as σ → 0. It should be noted that in the framework of the signal transmission problem such estimates describe a signal’s behavior under the influence of detection and amplification. This work...

Currently displaying 201 – 220 of 600