The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 2661 – 2680 of 13227

Showing per page

Control on weak asymptotic abelianness with the help of the crossed product construction

Heide Narnhofer (1998)

Banach Center Publications

The crossed product construction is used to control in some examples the asymptotic behaviour of time evolution. How invariant states on a small algebra can be extended to invariant states on a larger algebra reduces to solving an eigenvalue problem. In some cases (the irrational rotation algebra) this eigenvalue problem has only trivial solutions and by reduction of the subalgebra control on all invariant states can be found.

Controlled convergence theorems for Henstock-Kurzweil-Pettis integral on m -dimensional compact intervals

Sokol B. Kaliaj, Agron D. Tato, Fatmir D. Gumeni (2012)

Czechoslovak Mathematical Journal

In this paper we use a generalized version of absolute continuity defined by J. Kurzweil, J. Jarník, Equiintegrability and controlled convergence of Perron-type integrable functions, Real Anal. Exch. 17 (1992), 110–139. By applying uniformly this generalized version of absolute continuity to the primitives of the Henstock-Kurzweil-Pettis integrable functions, we obtain controlled convergence theorems for the Henstock-Kurzweil-Pettis integral. First, we present a controlled convergence theorem for...

Convergence in the generalized sense relative to Banach algebras of operators and in LMC-algebras

Bruce Barnes (1995)

Studia Mathematica

The notion of convergence in the generalized sense of a sequence of closed operators is generalized to the situation where the closed operators involved are affiliated with a Banach algebra of operators. Also, the concept of convergence in the generalized sense is extended to the context of a LMC-algebra, where it applies to the spectral theory of the algebra.

Convergence of greedy approximation I. General systems

S. V. Konyagin, V. N. Temlyakov (2003)

Studia Mathematica

We consider convergence of thresholding type approximations with regard to general complete minimal systems eₙ in a quasi-Banach space X. Thresholding approximations are defined as follows. Let eₙ* ⊂ X* be the conjugate (dual) system to eₙ; then define for ε > 0 and x ∈ X the thresholding approximations as T ε ( x ) : = j D ε ( x ) e * j ( x ) e j , where D ε ( x ) : = j : | e * j ( x ) | ε . We study a generalized version of T ε that we call the weak thresholding approximation. We modify the T ε ( x ) in the following way. For ε > 0, t ∈ (0,1) we set D t , ε ( x ) : = j : t ε | e * j ( x ) | < ε and consider the weak...

Convergence of greedy approximation II. The trigonometric system

S. V. Konyagin, V. N. Temlyakov (2003)

Studia Mathematica

We study the following nonlinear method of approximation by trigonometric polynomials. For a periodic function f we take as an approximant a trigonometric polynomial of the form G ( f ) : = k Λ f ̂ ( k ) e i ( k , x ) , where Λ d is a set of cardinality m containing the indices of the m largest (in absolute value) Fourier coefficients f̂(k) of the function f. Note that Gₘ(f) gives the best m-term approximant in the L₂-norm, and therefore, for each f ∈ L₂, ||f-Gₘ(f)||₂ → 0 as m → ∞. It is known from previous results that in the case of...

Convergence of orthogonal series of projections in Banach spaces

Ryszard Jajte, Adam Paszkiewicz (1997)

Annales Polonici Mathematici

For a sequence ( A j ) of mutually orthogonal projections in a Banach space, we discuss all possible limits of the sums S n = j = 1 n A j in a “strong” sense. Those limits turn out to be some special idempotent operators (unbounded, in general). In the case of X = L₂(Ω,μ), an arbitrary unbounded closed and densely defined operator A in X may be the μ-almost sure limit of S n (i.e. S n f A f μ-a.e. for all f ∈ (A)).

Convergence of Rothe's method in Hölder spaces

Norio Kikuchi, Jozef Kačur (2003)

Applications of Mathematics

The convergence of Rothe’s method in Hölder spaces is discussed. The obtained results are based on uniform boundedness of Rothe’s approximate solutions in Hölder spaces recently achieved by the first author. The convergence and its rate are derived inside a parabolic cylinder assuming an additional compatibility conditions.

Currently displaying 2661 – 2680 of 13227