The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 2721 – 2740 of 13227

Showing per page

Convolution algebras with weighted rearrangement-invariant norm

R. Kerman, E. Sawyer (1994)

Studia Mathematica

Let X be a rearrangement-invariant space of Lebesgue-measurable functions on n , such as the classical Lebesgue, Lorentz or Orlicz spaces. Given a nonnegative, measurable (weight) function on n , define X ( w ) = F : n : > F X ( w ) : = F w X . We investigate conditions on such a weight w that guarantee X(w) is an algebra under the convolution product F∗G defined at x n by ( F G ) ( x ) = ʃ n F ( x - y ) G ( y ) d y ; more precisely, when F G X ( w ) F X ( w ) G X ( w ) for all F,G ∈ X(w).

Convolution equations in the space of Laplace distributions

Maria E. Pliś (1998)

Annales Polonici Mathematici

A formal solution of a nonlinear equation P(D)u = g(u) in 2 variables is constructed using the Laplace transformation and a convolution equation. We assume some conditions on the characteristic set Char P.

Convolutions related to q-deformed commutativity

Anna Kula (2010)

Banach Center Publications

Two important examples of q-deformed commutativity relations are: aa* - qa*a = 1, studied in particular by M. Bożejko and R. Speicher, and ab = qba, studied by T. H. Koornwinder and S. Majid. The second case includes the q-normality of operators, defined by S. Ôta (aa* = qa*a). These two frameworks give rise to different convolutions. In particular, in the second scheme, G. Carnovale and T. H. Koornwinder studied their q-convolution. In the present paper we consider another convolution of measures...

Currently displaying 2721 – 2740 of 13227