The Dual of a Space of Vector Measures.
The dual of the James tree space is asymptotically uniformly convex.
In the paper, we show that the space of functions of bounded variation and the space of regulated functions are, in some sense, the dual space of each other, involving the Henstock-Kurzweil-Stieltjes integral.
Let H(Q) be the space of all the functions which are holomorphic on an open neighbourhood of a convex locally closed subset Q of CN, endowed with its natural projective topology. We characterize when the topology of the weighted inductive limit of Fréchet spaces which is obtained as the Laplace transform of the dual H(Q)' of H(Q) can be described by weighted sup-seminorms. The behaviour of the corresponding inductive limit of spaces of continuous functions is also investigated.
For , a characterization is given of the dual space of weak taken over a non atomic measure space.
The Dunford-Pettis property and the Gelfand-Phillips property are studied in the context of spaces of operators. The idea of L-sets is used to give a dual characterization of the Dunford-Pettis property.
We prove some exact formulas for the E and K functionals for pairs of the type (X(A),l sub ∞ (B)) where X has the lattice property. These formulas are extensions of their well-known counterparts in the scalar valued case. In particular we generalize formulas by Pisier and by the present author.