Displaying 301 – 320 of 397

Showing per page

Division of Distributions by Locally Definable Quasianalytic Functions

Krzysztof Jan Nowak (2010)

Bulletin of the Polish Academy of Sciences. Mathematics

We demonstrate that the Łojasiewicz theorem on the division of distributions by analytic functions carries over to the case of division by quasianalytic functions locally definable in an arbitrary polynomially bounded, o-minimal structure which admits smooth cell decomposition. Hence, in particular, the principal ideal generated by a locally definable quasianalytic function is closed in the Fréchet space of smooth functions.

Does C* -embedding imply C*-embedding in the realm of products with a non-discrete metric factor?

Valentin Gutev, Haruto Ohta (2000)

Fundamenta Mathematicae

The above question was raised by Teodor Przymusiński in May, 1983, in an unpublished manuscript of his. Later on, it was recognized by Takao Hoshina as a question that is of fundamental importance in the theory of rectangular normality. The present paper provides a complete affirmative solution. The technique developed for the purpose allows one to answer also another question of Przymusiński's.

Domains of Dirichlet forms and effective resistance estimates on p.c.f. fractals

Jiaxin Hu, Xingsheng Wang (2006)

Studia Mathematica

We consider post-critically finite self-similar fractals with regular harmonic structures. We first obtain effective resistance estimates in terms of the Euclidean metric, which in particular imply the embedding theorem for the domains of the Dirichlet forms associated with the harmonic structures. We then characterize the domains of the Dirichlet forms.

Domains of integral operators

Iwo Labuda, Paweł Szeptycki (1994)

Studia Mathematica

It is shown that the proper domains of integral operators have separating duals but in general they are not locally convex. Banach function spaces which can occur as proper domains are characterized. Some known and some new results are given, illustrating the usefulness of the notion of proper domain.

Dominated ergodic theorems in rearrangement invariant spaces

Michael Braverman, Ben-Zion Rubshtein, Alexander Veksler (1998)

Studia Mathematica

We study conditions under which Dominated Ergodic Theorems hold in rearrangement invariant spaces. Consequences for Orlicz and Lorentz spaces are given. In particular, our results generalize the classical theorems for the spaces L p and the classes L l o g n L .

Dominated operators on C[0, 1] and the (CRP).

G. Emmanuele (1990)

Collectanea Mathematica

We show that a B-space E has the (CRP) if and only if any dominated operator T from C[0, 1] into E is compact. Hence we apply this result to prove that c0 embeds isomorphically into the B-space of all compact operators from C[0, 1] into an arbitrary B-space E without the (CRP).

Domination by positive Banach-Saks operators

Julio Flores, César Ruiz (2006)

Studia Mathematica

Given a positive Banach-Saks operator T between two Banach lattices E and F, we give sufficient conditions on E and F in order to ensure that every positive operator dominated by T is Banach-Saks. A counterexample is also given when these conditions are dropped. Moreover, we deduce a characterization of the Banach-Saks property in Banach lattices in terms of disjointness.

Domination of operators in the non-commutative setting

Timur Oikhberg, Eugeniu Spinu (2013)

Studia Mathematica

We consider majorization problems in the non-commutative setting. More specifically, suppose E and F are ordered normed spaces (not necessarily lattices), and 0 ≤ T ≤ S in B(E,F). If S belongs to a certain ideal (for instance, the ideal of compact or Dunford-Pettis operators), does it follow that T belongs to that ideal as well? We concentrate on the case when E and F are C*-algebras, preduals of von Neumann algebras, or non-commutative function spaces. In particular, we show that, for C*-algebras...

Domination properties in ordered Banach algebras

H. du T. Mouton, S. Mouton (2002)

Studia Mathematica

We recall from [9] the definition and properties of an algebra cone C of a real or complex Banach algebra A. It can be shown that C induces on A an ordering which is compatible with the algebraic structure of A. The Banach algebra A is then called an ordered Banach algebra. An important property that the algebra cone C may have is that of normality. If C is normal, then the order structure and the topology of A are reconciled in a certain way. Ordered Banach algebras have interesting spectral properties....

Double convergence and products of Fréchet spaces

Josef Novák (1998)

Czechoslovak Mathematical Journal

The paper is devoted to convergence of double sequences and its application to products. In a convergence space we recognize three types of double convergences and points, respectively. We give examples and describe their structure and properties. We investigate the relationship between the topological and convergence closure product of two Fréchet spaces. In particular, we give a necessary and sufficient condition for the topological product of two compact Hausdorff Fréchet spaces to be a Fréchet...

Double exponential integrability, Bessel potentials and embedding theorems

David Edmunds, Petr Gurka, Bohumír Opic (1995)

Studia Mathematica

This paper is a continuation of [5] and provides necessary and sufficient conditions for double exponential integrability of the Bessel potential of functions from suitable (generalized) Lorentz-Zygmund spaces. These results are used to establish embedding theorems for Bessel potential spaces which extend Trudinger's result.

Currently displaying 301 – 320 of 397