Displaying 341 – 360 of 372

Showing per page

Functions locally dependent on finitely many coordinates.

Petr Hájek, Václav Zizler (2006)

RACSAM

The notion of functions dependent locally on finitely many coordinates plays an important role in the theory of smoothness and renormings on Banach spaces, especially when higher smoothness (C∞) is involved. In this note we survey most of the main results in this area, and indicate many old as well as new open problems.

Functions of finite fractional variation and their applications to fractional impulsive equations

Dariusz Idczak (2017)

Czechoslovak Mathematical Journal

We introduce a notion of a function of finite fractional variation and characterize such functions together with their weak σ -additive fractional derivatives. Next, we use these functions to study differential equations of fractional order, containing a σ -additive term—we prove existence and uniqueness of a solution as well as derive a Cauchy formula for the solution. We apply these results to impulsive equations, i.e. equations containing the Dirac measures.

Functions with prescribed singularities

Giovanni Alberti, S. Baldo, G. Orlandi (2003)

Journal of the European Mathematical Society

The distributional k -dimensional Jacobian of a map u in the Sobolev space W 1 , k 1 which takes values in the sphere S k 1 can be viewed as the boundary of a rectifiable current of codimension k carried by (part of) the singularity of u which is topologically relevant. The main purpose of this paper is to investigate the range of the Jacobian operator; in particular, we show that any boundary M of codimension k can be realized as Jacobian of a Sobolev map valued in S k 1 . In case M is polyhedral, the map we construct...

Funzioni B V e tracce

G. Anzellotti, M. Giaquinta (1978)

Rendiconti del Seminario Matematico della Università di Padova

Currently displaying 341 – 360 of 372