Displaying 381 – 400 of 600

Showing per page

Every separable Banach space has a bounded strong norming biorthogonal sequence which is also a Steinitz basis

Paolo Terenzi (1994)

Studia Mathematica

Every separable, infinite-dimensional Banach space X has a biorthogonal sequence z n , z * n , with s p a n z * n norming on X and z n + z * n bounded, so that, for every x in X and x* in X*, there exists a permutation π(n) of n so that x c o n v ¯ f i n i t e s u b s e r i e s o f n = 1 z * n ( x ) z n a n d x * n ( x ) = n = 1 z * π ( n ) ( x ) x * ( z π ( n ) ) .

Every separable L₁-predual is complemented in a C*-algebra

Wolfgang Lusky (2004)

Studia Mathematica

We show that every separable complex L₁-predual space X is contractively complemented in the CAR-algebra. As an application we deduce that the open unit ball of X is a bounded homogeneous symmetric domain.

Examples of k-iterated spreading models

Spiros A. Argyros, Pavlos Motakis (2013)

Studia Mathematica

It is shown that for every k ∈ ℕ and every spreading sequence eₙₙ that generates a uniformly convex Banach space E, there exists a uniformly convex Banach space X k + 1 admitting eₙₙ as a k+1-iterated spreading model, but not as a k-iterated one.

Excision in entire cyclic cohomology

Ralf Meyer (2001)

Journal of the European Mathematical Society

We prove that entire and periodic cyclic cohomology satisfy excision for extensions of bornological algebras with a bounded linear section. That is, for such an extension we obtain a six term exact sequence in cohomology.

Currently displaying 381 – 400 of 600