Fortsetzungen extremaler Funktionale.
This work deals with various questions concerning Fourier multipliers on , Schur multipliers on the Schatten class as well as their completely bounded versions when and are viewed as operator spaces. For this purpose we use subsets of ℤ enjoying the non-commutative Λ(p)-property which is a new analytic property much stronger than the classical Λ(p)-property. We start by studying the notion of non-commutative Λ(p)-sets in the general case of an arbitrary discrete group before turning to the...
We show that the Fourier-Laplace series of a distribution on the real, complex or quarternionic projective space is uniformly Cesàro-summable to zero on a neighbourhood of a point if and only if this point does not belong to the support of the distribution.
The sub-Laplacian on the Heisenberg group is first decomposed into twisted Laplacians parametrized by Planck's constant. Using Fourier-Wigner transforms so parametrized, we prove that the twisted Laplacians are globally hypoelliptic in the setting of tempered distributions. This result on global hypoellipticity is then used to obtain Liouville's theorems for harmonic functions for the sub-Laplacian on the Heisenberg group.
MSC 2010: 26A33, 46Fxx, 58C05 Dedicated to 80-th birthday of Prof. Rudolf GorenfloWe generalize the two forms of the fractional derivatives (in Riemann-Liouville and Caputo sense) to spaces of generalized functions using appropriate techniques such as the multiplication of absolutely continuous function by the Heaviside function, and the analytical continuation. As an application, we give the two forms of the fractional derivatives of discontinuous functions in spaces of distributions.
In this article, via fractional Hajłasz gradients, the authors introduce a class of fractional Hajłasz-Morrey-Sobolev spaces, and investigate the relations among these spaces, (grand) Morrey-Triebel-Lizorkin spaces and Triebel-Lizorkin-type spaces on both Euclidean spaces and RD-spaces.