The search session has expired. Please query the service again.
Displaying 4621 –
4640 of
13226
The aim of this paper is to show that the integral and derivative operators defined by local regularities are homeomorphisms for generalized Besov and Triebel-Lizorkin spaces with local regularities. The underlying geometry is that of homogeneous type spaces and the functions defining local regularities belong to a larger class of growth functions than the potentials tα, related to classical fractional integral and derivative operators and Besov and Triebel-Lizorkin spaces.
The classical Erdös spaces are obtained as the subspaces of real separable Hilbert space consisting of the points with all coordinates rational or all coordinates irrational, respectively. One can create variations by specifying in which set each coordinate is allowed to vary. We investigate the homogeneity of the resulting subspaces. Our two main results are: in case all coordinates are allowed to vary in the same set the subspace need not be homogeneous, and by specifying different sets for different...
Let be a homogeneous algebra on the circle and the closed subalgebra of of functions having analytic extensions into the unit disk . This paper considers the structure of closed ideals of under suitable restrictions on the synthesis properties of . In particular, completely characterized are the closed ideals in whose zero sets meet the circle in a countable set of points. These results contain some previous results of Kahane and Taylor-Williams obtained independently.
This paper considers the Lipschitz subalgebras of a homogeneous algebra on the circle. Interpolation space theory is used to derive estimates for the multiplier norm on closed primary ideals in , . From these estimates the Ditkin and Analytic Ditkin conditions for follow easily. Thus the well-known theory of (regular) Banach algebras satisfying the Ditkin condition applies to as does the theory developed in part I of this series which requires the Analytic Ditkin condition.Examples are discussed...
Let be a Jordan-Banach algebra with identity 1, whose norm satisfies:(i) , (ii) (iii) . is called a JB algebra (E.M. Alfsen, F.W. Shultz and E. Stormer, Oslo preprint (1976)). The set of squares in is a closed convex cone. is a complete ordered vector space with as a order unit. In addition, we assume to be monotone complete (i.e. coincides with the bidual ), and that there exists a finite normal faithful trace on .Then the completion of with respect to the Hilbert structure...
Homogenization of periodic functionals, whose integrands possess possibly multi-well structure, is treated in terms of Young measures. More precisely, we characterize the -limit of sequences of such functionals in the set of Young measures, extending the relaxation theorem of Kinderlherer and Pedregal. We also make precise the relationship between our homogenized density and the classical one.
Homogenization of periodic functionals, whose integrands possess possibly multi-well structure, is treated in terms of Young measures. More precisely, we characterize the Γ-limit of sequences of such functionals in the set of Young measures, extending the relaxation theorem of Kinderlherer and Pedregal. We also make precise the relationship between our homogenized density and the classical one.
We prove that a homogeneous Banach space B on the unit circle T can be embedded as a closed subspace of a dual space Ξ*B contained in the space of bounded Borel measures on T in such a way that the map B → Ξ*B defines a bijective correspondence between the class of homogeneous Banach spaces on T and the class of prehomogeneous Banach spaces on T.We apply our results to show that the algebra of all continuous functions on T is the only homogeneous Banach algebra on T in which every closed ideal has...
We give a survey of our recent results on homological properties of Köthe algebras, with an emphasis on biprojectivity, biflatness, and homological dimension. Some new results on the approximate contractibility of Köthe algebras are also presented.
Let S be a Rees semigroup, and let ℓ¹(S) be its convolution semigroup algebra. Using Morita equivalence we show that bounded Hochschild homology and cohomology of ℓ¹(S) are isomorphic to those of the underlying discrete group algebra.
Currently displaying 4621 –
4640 of
13226