The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 5341 – 5360 of 13227

Showing per page

Lebesgue points for Sobolev functions on metric spaces.

Juha Kinnunen, Visa Latvala (2002)

Revista Matemática Iberoamericana

Our main objective is to study the pointwise behaviour of Sobolev functions on a metric measure space. We prove that a Sobolev function has Lebesgue points outside a set of capacity zero if the measure is doubling. This result seems to be new even for the weighted Sobolev spaces on Euclidean spaces. The crucial ingredient of our argument is a maximal function related to discrete convolution approximations. In particular, we do not use the Besicovitch covering theorem, extension theorems or representation...

Left quotients of a C*-algebra, III: Operators on left quotients

Lawrence G. Brown, Ngai-Ching Wong (2013)

Studia Mathematica

Let L be a norm closed left ideal of a C*-algebra A. Then the left quotient A/L is a left A-module. In this paper, we shall implement Tomita’s idea about representing elements of A as left multiplications: π p ( a ) ( b + L ) = a b + L . A complete characterization of bounded endomorphisms of the A-module A/L is given. The double commutant π p ( A ) ' ' of π p ( A ) in B(A/L) is described. Density theorems of von Neumann and Kaplansky type are obtained. Finally, a comprehensive study of relative multipliers of A is carried out.

Left-covariant differential calculi on S L q ( N )

Konrad Schmüdgen, Axel Schüler (1997)

Banach Center Publications

We study N 2 - 1 dimensional left-covariant differential calculi on the quantum group S L q ( N ) . In this way we obtain four classes of differential calculi which are algebraically much simpler as the bicovariant calculi. The algebra generated by the left-invariant vector fields has only quadratic-linear relations and posesses a Poincaré-Birkhoff-Witt basis. We use the concept of universal (higher order) differential calculus associated with a given left-covariant first order differential calculus. It turns out...

Les espaces de Berkovich sont angéliques

Jérôme Poineau (2013)

Bulletin de la Société Mathématique de France

Bien que les espaces de Berkovich définis sur un corps trop gros ne soient, en général, pas métrisables, nous montrons que leur topologie reste en grande partie gouvernée par les suites : tout point adhérent à une partie est limite d’une suite de points de cette partie et les parties compactes sont séquentiellement compactes. Notre preuve utilise de façon essentielle l’extension des scalaires et nous en étudions certaines propriétés. Nous montrons qu’un point d’un disque peut être défini sur un...

Currently displaying 5341 – 5360 of 13227