Displaying 5481 – 5500 of 13227

Showing per page

Lipschitz approximable Banach spaces

Gilles Godefroy (2020)

Commentationes Mathematicae Universitatis Carolinae

We show the existence of Lipschitz approximable separable spaces which fail Grothendieck's approximation property. This follows from the observation that any separable space with the metric compact approximation property is Lipschitz approximable. Some related results are spelled out.

Lipschitz continuity in Muckenhoupt 𝓐₁ weighted function spaces

Dorothee D. Haroske (2011)

Banach Center Publications

We study continuity envelopes of function spaces B p , q s ( , w ) and F p , q s ( , w ) where the weight belongs to the Muckenhoupt class ₁. This essentially extends partial forerunners in [13, 14]. We also indicate some applications of these results.

Lipschitz extensions of convex-valued maps

Alberto Bressan, Agostino Cortesi (1986)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Si dimostra che ogni funzione multivoca lipschitziana con costante di Lipschitz M , definita su un sottoinsieme di uno spazio di Hilbert H a valori compatti e convessi in n , può essere estesa su tutto H ad una funzione multivoca lipschitziana con costante minore di 7 nM. In generale, non esistono invece estensioni aventi la stessa costante di Lipschitz M .

Lipschitz-free Banach spaces

G. Godefroy, N. J. Kalton (2003)

Studia Mathematica

We show that when a linear quotient map to a separable Banach space X has a Lipschitz right inverse, then it has a linear right inverse. If a separable space X embeds isometrically into a Banach space Y, then Y contains an isometric linear copy of X. This is false for every nonseparable weakly compactly generated Banach space X. Canonical examples of nonseparable Banach spaces which are Lipschitz isomorphic but not linearly isomorphic are constructed. If a Banach space X has the bounded approximation...

Lipschitz-quotients and the Kunen-Martin Theorem

Yves Dutrieux (2001)

Commentationes Mathematicae Universitatis Carolinae

We show that there is a universal control on the Szlenk index of a Lipschitz-quotient of a Banach space with countable Szlenk index. It is in particular the case when two Banach spaces are Lipschitz-homeomorphic. This provides information on the Cantor index of scattered compact sets K and L such that C ( L ) is a Lipschitz-quotient of C ( K ) (that is the case in particular when these two spaces are Lipschitz-homeomorphic). The proof requires tools of descriptive set theory.

Currently displaying 5481 – 5500 of 13227