The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 5581 –
5600 of
13227
A new lower bound for the Jung constant of the Orlicz sequence space defined by an N-function Φ is found. It is proved that if is reflexive and the function tΦ’(t)/Φ(t) is increasing on , then
.
Examples in Section 3 show that the above estimate is better than in Zhang’s paper (2003) in some cases and that the results given in Yan’s paper (2004) are not accurate.
In this paper we consider some matrix operators on block weighted sequence spaces . The problem is to find the lower bound of some matrix operators such as Hausdorff and Hilbert matrices on . This study is an extension of papers by G. Bennett, G.J.O. Jameson and R. Lashkaripour.
For 1 < p < 2 we obtain sharp lower bounds for the uniform norm of products of homogeneous polynomials on , whenever the number of factors is no greater than the dimension of these Banach spaces (a condition readily satisfied in infinite-dimensional settings). The result also holds for the Schatten classes . For p > 2 we present some estimates on the constants involved.
We prove trace inequalities of type where , under suitable hypotheses on the sequences and , with the first sequence increasing and the second bounded.
Banach spaces which are L-summands in their biduals - for example , the predual of any von Neumann algebra, or the dual of the disc algebra - have Pełczyński’s property (V*), which means that, roughly speaking, the space in question is either reflexive or is weakly sequentially complete and contains many complemented copies of .
A generalization of the Lyapunov convexity theorem is proved for a vector measure with values in a Banach space with unconditional basis, which is q-concave for some q < ∞ and does not contain any isomorphic copy of l₂.
The classical notion of Łojasiewicz ideals of smooth functions is studied in the context of non-quasianalytic Denjoy-Carleman classes. In the case of principal ideals, we obtain a characterization of Łojasiewicz ideals in terms of properties of a generator. This characterization involves a certain type of estimates that differ from the usual Łojasiewicz inequality. We then show that basic properties of Łojasiewicz ideals in the case have a Denjoy-Carleman counterpart.
A new class of linear and bounded operators is introduced. This class is more general than the classes of operators from [4], [5] and [8]. Using this class lΦ,φ we also introduce a class of locally convex spaces which is more general than the classes of the nuclear spaces [2], [3] and φ-nuclear spaces [6]. For this class of operators similar properties are established to those of the well known classes lp, lφ, lΦ and also the stability of the tensor product is proved. The stability of the tensor...
Currently displaying 5581 –
5600 of
13227